

Deep Learning of Remote Sensing Images to Predict Wildfires

presented by Christian D. Klose

Wildfires are a global issue showing a strong increase in the amount of burnt area – Hot spots are distributed all over the world

Average annual fraction of burnt area (1997 - 2009)

Currently the most severe fires happen in the tropics as well as in Central Asia and Siberia. Areas that typically lead to insurance loss from wildfires are relatively less affected. But the situation is expected to significantly shift over the next years due to climate change.

Predictions based on an average of 16 climate models in the 2007 IPCC report Change in average fire probability for the period 2010 - 2039

Wildfires are expected to increase with climate change

The likelihood to experience large fires is increasing globally in the subtropics and temperate zones while decreasing in the tropics.

This means that the number of people and property value at risk from wildfire will significantly increase over the next decades.

Source: ONAL/NASA, Moritz et al. (2012), Ecosphere

Swiss Re identified wildfires as a peril gaining more and more relevance – Therefore we are looking more deeply into this topic from a hazard modelling perspective

Swiss Re's current wildfire layer has global coverage ...

- Swiss Re developed in the past a wildfire hazard layer looking at the count of 600MW+ fires between 2000 and 2011.
- The data was mostly based on remote sensing data.

... but a more sophisticated forecast model is in development

- Swiss Re's wildfire hazard model is able to forecast wildfire hazard in space several month in advance.
- It takes into account climatic and non-climatic characteristics in space and time on a 10x10km resolution.

Data Imbalance

Fires represent 0.1 % of our training data, hence we have an imbalanced problem

Fire Distribution

Distribution of fires is highly skewed towards small fires

Fires' Low Predictability

Fires can be hard to predict. We need to use different proxies to increase our prediction power

Deep Learning: Classic CNN - Set-Up

Motivation

- Account for spatial correlation
- Give the model more complexity and scalability

Data

- Grayscale images of North America (7 channels)
- Size =30, overlap = 50%
- Training data: 80923 images with at least one fire in them (out of 332310)

Features Selected

	-		
Climatic	Geographical	Sources Of Ignition	Historical
Climatic conditions	Vegetation index	Lightning	Number of past fires
Climatic conditions year before	Snow cover	Roadmap	Number of past fires in neighbors
Climatic conditions evolution	Vegetation type	Closest roadmap	Months since last fire
Climatic conditions of neighbors	Elevation	Population	Months since last fire in neighbors
Climate indices	Fuel / WUI	Closest population	

Sampling Selected

Location-Based	Ensemble	Filtering	Imbalance	Classical	Regional Model
Sampling	Wiethou			Samping	

Method Selected

Logistic Regression	CART	Random Forest	
Boosted Trees	Neural Networks	Optimal Trees	

Results: Best Occurrence/Severity Model and Features

	Accuracy	Precision	Recall	Average Precision
Baseline	99%	8%	37%	3%
Best Model	90%	2%	88%	10%

Evolution of Average Precision Score with increasing prediction horizon for Best Model

Severity Model Output

Fire Size Actual/Predictions:				
	Small	Medium	Large	
Small	869360	12602	140	
Medium	423	311	2	
Large	53	87	30	

precision	recall
Small:0.99Medium:0.02Large:0.17Overall :0.40	Small:0.99Medium:0.42Large:0.18Overall:0.53

I	Greater than threshold (0.04):				
ł		Small	Medium	Large	
i	Small	1138	49	0	
ļ	Medium	126	94	2	
i	Large	24	28	10	
Ľ				;	

Historical Fire Pixels:				
	Small	Medium	Large	
Small	3292	182	0	
Medium	423	311	2	
Large	53	87	30	

precision	recall
Small: 0.88 Medium: 0.55 Large: 0.83 Overall: 0.76	Small: 0.96 Medium: 0.42 Large: 0.16 Overall: 0.51

precision	recall
Small: 0.87 Medium: 0.54	Small: 0.95 Medium: 0.42
Large: 0.94 Overall : 0.78	Large:0.18Overall:0.52

Model Benchmarking (Prediction done in Sept of the previous year)

Output of the Forecasts

Fig 5: The chart illuminates the wildfire hazard annual changes in North, Central and South California since 2002 with seasonal changes.

An Al View on California's Wildfire Risk since 2002

This presentation summarizes a very simple risk analysis on wildfire in CA by including population growth as proxy for exposure and wildfire hazards model that takes atmospheric into account and that utilized AI to learn from historic observations.

Forecast Precision of

Large Fires

83%

Wildfire risk tends to increase within CA due to population increase particularly in Wildland Urban Interfaces. Large Fires (>100 km2) can be seen with 83% confidence.

Overall the modelled expected wildfire risk may not explain all major losses of 2017 and 2018. However, it shows that California's population is continuously exposed to a minimum wildfire hazard, due to increasing exposure in WUIs but more importantly due to conditions in the atmosphere and biosphere, including net radiation, water vapor or wind speed.

.11

16% of Fires Seen

Only every 5th large fire can be detected by the model yet.

15% Wind Speed Increase

The speed of peak winds has been continuously increasing since 2013.

5% Drop in Water Vapor

Fig 1a: The chart illuminates the wildfire hazard/risk annual changes in California since 2002.

Fig 1b: Correlation of the observed and predicated total burned areas (seasonal view).

Throughout CA, the cooling water vapor has been dropping since 2013.

Wildfire Risk – 2019 CA

Thank You

Any questions?