Deep Representation Learning using Stacked Autoencoder for General Insurance Loss Reserving

Insurance Data Science Conference ETH Zurich

14th June 2019

Phani Krishna Kandala Pricing Actuary, Swiss Re

Satya Sai Mudigonda Senior Tech Actuarial Consultant

Agenda

Introduction
Key Concepts: Reserving & Neural Networks
Motivation
Experimental Setup
Results
Next Steps
Q & A

Introduction

A novel approach for loss reserving based on blended unsupervised and supervised deep neural networks.

Reserving – Key Concepts

Neural Network – Key Concepts

INPUT LAYER

- Inputs information for the neural network to process
- Each circle represents one feature

Motivation of the paper

Auto Encoders - Overview

Stacked Auto Encoders - Overview

Key Research Contribution from the Past

Neural Network embedding of the ODP reserving model -Mario Wuthrich¹

Insights from Inside Neutral Networks: Switzerland Actuaries Association²

- 1. Gabrielli, A., Richman, R., W["]uthrich, M.V. (2018). Neural network embedding of the overdispersed Poisson reserving model. SSRN Preprint
- 2. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3226852

Experimental Setup

Data: Data has been taken from Bjorn Weindorfer¹ paper

1 - https://www.uio.no/studier/emner/matnat/math/STK4540/h18/course-material/chainladder.pdf

Loss Reserve Predictions

Three different approaches have been compared with respect to Loss Reserve Predictions

Result 1 Reserve Prediction with Neural Network

Reserve Prediction with Auto-Encoder + Neural Network

Result 3

Reserve Prediction with Stacked Auto-Encoder + Neural Network

Potential Benefits to Insurer

Fastens the process of prediction by identifying the most important features

Useful to learn the 2 way and 3 way interactions in the claims data. For example: Claim type and cause of claim

Highlights the main reasons for claims reserves increase/ decrease

Next Steps

Reduction in bias by optimising the Neural network and Autoencoders.

Working on different LoBs without any embedding function(s)

Working on individual claims data to automatically highlight the predominant features increasing/decreasing the reserves.

- Adequate capital allocation.
- Suitable Reinsurance product(s) selection.
- Efficient Risk Management on insurance risk front.

Q & A

- What is novel about this idea?
- What functions of insurance company will be able to use this idea?
- What are the benefits to insurance companies?
- Are you using any proprietary software/packages?
- Is this approach used in any other industry?
- How this approach can be improved further?
- What are the limitations of this approach?
- What reserve prediction methods does this idea support?
- How this approach is superior to using Neural Networks on stand alone basis?

Acknowledgements

- SSSIHL for providing Technology Labs and Actuarial Support
- Dr. Pallav Kumar Baruah, Department of Mathematics and Computer Science
- Arun Kumar K
- Nikhil Rai, M.Tech
- Rohan Yashraj Gupta, Actuarial Research Scholar