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Setup

• Let us consider a binary event D whose observations are denoted di = 1 if the
event occurs, and di = 0 otherwise, where i denotes the ith observations.

• Let us further assume that the (unobserved) probability of the event di = 1
depends on individual characteristics:

pi = s(xi)

where, with sample size n > 0, i = 1, . . . , n represents individuals, and xi the
characteristics.

• To estimate this probability, we can use a statistical model (e.g., a GLM) or a
machine learning model (e.g., a random forest).
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Motivation

• In insurance, we find cases where we are more interested in the underlying risk
than on being able to discriminate between the occurrence/non-occurrence of an
event:

• what is the probability for this insured to have an accident within the next year?
• what is the probability of death of this individual within the year?

“The phrase ‘probability of death’, when it refers to a single person, has no
meaning for us at all.” Von Mises et al. (1939)

• In such cases, it is important that the estimated scores can be interpreted as
probabilities.

• This might become a problem when using tree-based classifiers (Niculescu-Mizil
and Caruana, 2005; Park and Ho, 2020; Hänsch, 2020) rather than logistic
regression models (Machado et al., 2024).
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Definition

Calibration of a Binary Classifier (Schervish (1989))
For a binary variable D, a model is well-calibrated when

E[D | ŝ(X) = p] = p, ∀p ∈ [0, 1] . (1)

Note: conditioning by {ŝ(x) = p} leads to the concept of (local) calibration; however,
as discussed by Bai et al. (2021), {ŝ(x) = p} is a.s. a null mass event. Thus,
calibration should be understood in the sense that

E[D | ŝ(X) = p] a.s.→ p when n → ∞ ,

meaning that, asymptotically, the model is well-calibrated, or locally well-calibrated in
p, for any p.
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Calibration curve

• Estimation of g(·) (which measures miscalibration on predicted scores ŝ(x)):

g :

{
[0, 1] → [0, 1]

p 7→ g(p) := E[D | ŝ(x) = p]
. (2)

• Challenge: having enough observations with identical scores is difficult.
• Solutions:

1 Reliability diagram (Wilks, 1990): grouping obs. into B bins, defined by the
quantiles of predicted scores,

2 Using a smoother representation with local regression techniques, which estimates
a conditional expectation within a specified neighborhood of predicted scores
(Denuit et al., 2021).
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Metrics

Brier Score (Brier (1950))
The Brier Score does not depend on bins but directly on observations, and is defined as:

BS =
1

n

n∑
i=1

(di − ŝ(xi))
2

where di is the observed event and ŝ(xi) the estimated score.

Integrated Calibration Index or ICI (Austin and Steyerberg (2019))
The ICI is based on the calibration curve ĝ estimated with local regression techniques and is defined
as

ICI = 1

n

n∑
i=1

|ĝ (ŝ(xi)))− ŝ(xi))|

where ĝ (ŝ(xi))) represents the prediction obtained from the local regression fit on the estimated score
ŝ(xi).
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Illustrative example

• Consider the frenchmotor dataset from InsurFair (Charpentier, 2014), where
we aim to estimate the probability of accident for insureds within a year
(n = 12, 437 and 17 explanatory variables), by predicting the binary response
variable D, indicating the occurrence of an accident.

• We compare predictions from a GLM and a GAM to those from a random
forest (RF) regressor, increasingly used in insurance (NAIC, 2022).

Table 1: Performance and calibration metrics on test set.
Model AUC Brier score ICI
GLM 0.61 ± 0.03 0.08 ± 0.03 0.04 ± 0.03
GAM 0.61 ± 0.03 0.08 ± 0.03 0.04 ± 0.03
RF 0.88 ± 0.03 0.07 ± 0.02 0.05 ± 0.03
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Calibration curves (1/2)
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Figure 1: Distribution of estimated scores for the three models, along with their calibration
curves generated using locfit.
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Calibration curves (2/2)

The lack of score heterogeneity observed in RF model compared to GLM and GAM
is not assessed by calibration metrics.
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Figure 2: Distribution of estimated scores for the three models, along with their zoomed
reliability diagrams.
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Overview for decision trees

Here, we consider a simulated environment for Di ∼ B(pi), with pi the true
underlying probability distribution.
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Figure 3: Distribution of true probabilities and estimated scores for trees of interest. The
Kullback–Leibler divergence (KL) of ϕ from ψ is defined by DKL(ϕ||ψ)=

∑m
i=1 hϕ(i) log

hϕ(i)
hψ(i) .
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Bayesian framework: back to the frenchmotor dataset

• The true underlying data distribution of D is not observable.

• Expert opinion: Beta prior to model the underlying data distribution.
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ŝ(X)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

ICI*
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ŝ(X)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Brier*
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Figure 4: Distribution of RF predicted scores when
optimizing hyperparameters for AUC (AUC∗), ICI
(ICI∗) and KL (KL∗).

Table 2: Difference in validation set
metrics between ICI∗, KL∗ and the
reference model: AUC∗.

Optim. ∆AUC ∆ICI ∆KL
ICI∗ −0.23 −0.02 +0.44
KL∗ −0.05 +0.01 −0.77
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Figure 4: Distribution of RF predicted scores when
optimizing hyperparameters for AUC (AUC∗), ICI
(ICI∗) and KL (KL∗).

Table 2: Difference in validation set
metrics between ICI∗, KL∗ and the
reference model: AUC∗.

Optim. ∆AUC ∆ICI ∆KL
ICI∗ −0.23 −0.02 +0.44
KL∗ −0.05 +0.01 −0.77
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Wrap-up

• Calibration matters: when training classifiers, looking at calibration of models
should not be disregarded.

• Calibration may not be sufficient for tree-based methods: for RF, when score
heterogeneity is lacking, metrics such as KL should complement the commonly
used calibration metrics.

• Next steps: In particular, for private insurance, calibration (or sufficiency)
emerges as the most suitable metric for evaluating group fairness, as highlighted
by Baumann and Loi (2023).

Comments are welcome: fernandes_machado.agathe@courrier.uqam.ca
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(Mis-)Calibration and standard metrics

Table 3: Confusion Table

Actual/Predicted Positive Negative

Positive TP FN
Negative FP TN

where
TPR =

TP
TP + FN ; FPR =

FP
FP + TN

AUC (Area Under Curve): TPR and TFP for various prob. threshold τ
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Data Generating Process for Score Heterogeneity

Di ∼ B(pi),

where individual probabilities are obtained using a logistic sigmoid function:

pi =
1

1 + exp(−ηi)
,

ηi = axi

with a =
[
a1 a2

]
=

[
0.5 1

]
and xi =

[
x1,i x2,i

]⊤. The observations xi are drawn
from a N (0, 1).
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Parameters of RF for different optimization objectives

Table 4: RF parameters for different optimization objectives.

Optim. mtry num_trees min_node_size
AUC∗ 10 500 2
KL∗ 10 500 18
ICI∗ 4 500 512

Brier∗ 2 500 2
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Metrics of RF optimization on validation set

Table 5: AUC, ICI and KL calculations for different RF optimization objectives.

Optim. AUC ICI KL
AUC∗ 0.78 0.03 0.80
ICI∗ 0.55 0.002 1.24
KL∗ 0.73 0.03 0.03
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