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The presentation is based on the paper
On Duration Effects in Non-Life Insurance Pricing

written togheter with Taariq Nazar (Stockholm University), to
appear in the European Actuarial Journal



Background

» Data consists of triplets (Z, X, W), where

» 7 corresponds to the response e.g. claim amount,
» X is a vector of covariates,
> W is an exposure weight e.g. policy duration

» Standard GLM assumptions

E[Z | X, W] = Wu(X), and Var[Z | X, W] = Wa?(X)

> ...more specificly: Tweedie

Var[Z | X, W] = Weu(X)¢ (A2)

where “p" is the dispersion parameter
» Note that both (Al) and (A2) are linear in W



Background

Remarks

» Parameter estimation: the influence of W under (Al) is not
obvious

» Under (A2): hard to estimate ¢ if pu(X) is badly specified
(e.g. too rigid)



Background estimation

» Estimation of u typically based on deviance loss functions,
where the minimum is attained by the maximum likelihood
estimator (MLE)

> We consider Bregman deviance losses
(e.g. Poisson, and Gamma with fixed dispersion, under (Al))

» The deviance function for Y = Z/W can be written as
DBreg(Y7 ,U’) X Wd(Yv H),

where d(Y, i) is the so-called unit deviance function, see e.g.
Ohlsson & Johansson (2010), Wiithrich & Merz (2023)



Background estimation

» As discussed in Lindholm et al. (2023), the MLE for p
corresponds to the empirical version of the minimiser

m(X) € argmin E[Wd(Y, f(X))], (1)

where the minimisation is over suitable X-measurable
functions f (see ref. for details)

» As shown in Lindholm et al. (2023), the population minimiser
m(X) is given by
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(2)

which does not assume (A1) and does not rely on any specific
assumptions regarding the dependence between, Z, X, and W



Background estimation

Remarks

» From (2) it is clear that 7(X) will differ from p(X) unless
assumption (Al) is satisfied

» Given a reasonably well specified model, the above suggests
that the MLE will be a consistent estimator of 7(X), which
may, or may not, coincide with p(X)

» Note that 7(X) corresponds to the duration adjusted
actuarially fair premium, since 7(X) satisfies the relation

E[Wn(X) | X] = E[Z | X]



Background estimation

Note that

» Consistency relies on that we know that the functional form of
the true model is a GLM (or some other model class)

» In practice the true model is unknown, and a misspecified
model for E[Z | X] will lead to local bias, see e.g. Lindholm
et al. (2023) and Wiithrich & Ziegel (2023)

» Local bias will contaminate estimation of the dispersion
parameter ¢



Estimators and asymptotics

Estimators and asymptotics

» Focus will be on estimating the mean function for a specific
covariate vector X = x, without assuming any specific
functional form of u(X)

» Given sufficiently many observations of X = x, we may
estimate p(x) as a parameter

» This is a reasonable assumption when we consider the
situation of letting the sample size tend to infinity



Estimators and asymptotics

Proposition 1

Consider an i.i.d. sample (Z;, Xi, W;)™, = (Z;,x, W;)™, and
define Y; := Z;/W;. The estimator [im(x) that minimises the
duration weighted Bregman deviance is given by

R E.[Z| X =x
g EnlZ X =

En[W | X =x]

where

= 1 m fa 1 m
En[Z | X = X] = g Zi, and En[W|X =Xx] = E Wi,
=1 =1

for which it holds that

E[Z | X = x]

ﬂm(X) P W, as m— o0.



Estimators and asymptotics

Remarks (more in the paper)
» Proposition 1 does not assume

» independence between Z and W
» that the true data belongs to an EDF with expectation and
variance being linear in W

» The predictor fi, in Proposition 1 is always asymptotically
actuarially fair in the sense of 7 from (2)

...but 7 is not guaranteed to equal p unless (A1) hold!



Estimators and asymptotics

Dispersion modelling
» Above we have seen that E[Z | X] and E[W | X] appeared as
limiting objects
» When discussing dispersion and variation we will encounter
Var[Z | X] = E[Var[Z | X, W]] + Var[E[Z | X, W]],
or the corresponding expressions under Tweedie assumptions
> We will focus on Pearson estimators of ¢:
1 K Wi(Yi—n 2
Z l( i ,U*m(x)) (3)

m—1 i=1 l/ﬁn(x)

P =

...since there is trouble with consistency of deviance based
estimators, see Lindholm & Nazar (2024)



Estimators and asymptotics

Proposition 2
Given an i.i.d. sample (Z;, X;, W;)™, = (Z;,x, W;)T it holds that

. _ E[W | X = x]¢~1 Z2
P p *,P — - = —
Ph0) 2 P00 =200~ gz e o [ W X =%

as m — 0o, where

_EW | X =x]""tVar[Z | X =]

P(x): E[Z | X = x|¢ @

If the underlying data generating process agrees with moment
assumptions (A1) and (A2) then p*F(x) = ¢(x) and
() > p(x).



Estimators and asymptotics

Remarks

> Observing 3*P(x) > P(x) indicates violation of (A1) and
(A2), see Lindholm & Nazar (2024)

— The same conclusions hold true if we observe 3*F > 3(x)

» The plug-in variance of Z based on $*P(x) is only guaranteed
to be consistent under (A1) and (A2), see Lindholm & Nazar
(2024)

— An alternative to a plug-in variance estimator:

— 1 & ~ ~
WMV\Xzﬂﬁ;;EE(Z—EMWMX:meW
i=1

Em[Z|X=x]

(5)

which is consistent without assuming (Al) and (A2)!



Numerical illustrations

Setup
» Real insurance data: freMTPLfreq, see CASdatasets, and
see Lindholm et al. (2023) for other examples
» Will use a Poisson GBM-model with linear weights in W, all
standard parameters except tree depth, which is set to 2

» Optimal number of trees: 192

Model evaluation
» Use the (zi(x;))"_;-predictions from the GBM and order these
» This gives us ordered x(;):s such that ﬁ(x(,-)) corresponds to
the ith largest prediction

P> The ordered data set is the split into kK = 200 equally sized
bins used to evaluate local performance



Numerical illustrations
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Numerical illustrations

0.7

0.6

average duration

0.5

0.4

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

percentile



Numerical illustrations
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Figure: Dotted line: u( ); Purple dots:
T(x) = E[Z | X = x]/IE[W | X = x]; Green dots: E[Y | X =x]
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Figure: Blue dots: 3P (x); Blue line: ?°; Red dots: 3(x); Red line:
average of the ©(x)s



Numerical illustrations
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Figure: Black solid line: duration adjusted plug-in est. of E[Z | X = x];
Grey dots: E[Z | X = x]; Blue lines: plug-in est. of \/Var[Z | X = x];

Red lines: \/Var[Z | X = x]; Dashed line: Ji(x)



Numerical illustrations

Conclusions
» The dependence between Z and W matters in the bias
calculations — supported by real data

P In the real data example the plug-in standard deviation
variance is on average 30% larger than the corresponding
local sample standard deviation using (5)

» This can be compared with that the using

\E ~ 1/1.70 ~ 1.30 instead of
?=Var[Z | X = x]/E[Z | X = x] ~ 1.05

» Analysis “Trick”: use the original predictor for risk ordering,
and use simple sample variance estimators locally
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