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The challenge

Deliver a Pricing Process that is
fast, predictive and interactive
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The big picture

Control low-exposure segments
to prevent overfitting

Set coefficients of low-exposure
segments at zero

Shrink low-exposure segments

Work for multivariate models

Creates transparent models
(GLM or additive models)

Natively manage
non-linear effects

Coefficient depending on the
robustness parameter

A AKURS

Levels Credibility Ridge Lasso GBM Derivative
Selection Regression Regression Lasso
All the techniques presented today aim at controlling overfitting

I | |
Selection of No selection of effects Selection of effects, allowing binary decisions (if the
effects effects are visualized - not always true for GBMs)
| | |
No This allows to tolerate segments with limited (yet usable) data
Yes No Yes; apply the same priors / rules for all levels
[
Usually, output -
Designed for the GLM framework not Add(;tl\l/e
. . . transparent modeis
These techniques work on “pure GLM” (linear or categorical effects) Yes
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Worker’'s Compensation example
Loss Cost by class code example

Losses and exposures for companies are collected, and
we want to compute an estimation of the average loss
cost per class code.

The data can be represented visually:

e The blue bars represent the number of
observations for a given class;

e The purple lines represent the Observed
Experience as the average loss cost for each class;

e The black line represent the overall average (or
grand average) of $500 in this example.
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GLMs: Univariate estimate

A natural estimate is the average loss cost by class code.

Such estimate may be inappropriate for class Health-Care
which has low exposure.

The same argument applies for Finance and Construction.

This approach is followed in the GLM framework,
that fully trusts the data:

B* = Argmax Likelihood (0bs., B)

In many cases (for instance Posson-LogLink or
Gaussian-IdentityLink) the maximum of likelihooed matches
the average.
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GLMs: Univariate estimate

A natural estimate is the average loss cost by class code.

Such estimate may be inappropriate for class Health-Care
which has low exposure.

The same argument applies for Finance and Construction.

This approach is followed in the GLM framework,
that fully trusts the data:

B* = Argmax Likelihood (0Obs., B)

In many cases (for instance Posson-LogLink or
Gaussian-IdentityLink) the maximum of likelihooed
matches the average.
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Removing
non-significant
levels



Removing low-significance levels

( Estimate of loss cost by class code )
A classic approach is to use the statistical significance of the
different levels. Exposures —e— Observed —e— GLM estimates
== = Qverall Average
Levels that have low exposure (or small effects) are grouped 4000
800
together, or put at the average value. s500
700
The goal of this approach is to avoid trusting very noisy models 5 o0 2
with a few observations. g 80 2500 ,, 8
L o
. . S g so0 2000 2 £
The result obtained will depend on the significance threshold g g g
. . . . L [
above which levels will be kept into the final model or grouped: & 400 1500 8
z £
. . I g e 300 1000 2
- Ifalevel is more significant than the threshold, it is kept;
- Ifalevelis less significant than the threshold, it is 200 =0
removed. 0
; A &
. . /Ys%"oe, '?%/7 Oo%”l/or %%9 %ol”éoz g%"/ru, 06'7“8 cod@erp
Modelers often use a “5% significance level” but any other value e “n Wy "ee
can be selected. Class codes
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Fitted model depends on the threshold

Strong (low) significance thresholds are hard to validate and lead to a robust model.
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Fitted model depends on the threshold

Weak (high) significance threshold are easy to validate and lead to a volatile model.

Number of observations = Observed —®— GLM estimate
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Strengths & limits of levels selection

This approach has well know strengths and limits:

It is a binary method, leading to clear
decisions;

It is very frequently used and widely
accepted;

It relies on very classic statistics.
K It is a binary method: it does not use
efficiently the limited observations we have on

“health-care”;

XK Tests justification rely on hypothesis often
not met in practice.
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The Credibility solution

The idea of a credibility framework is to create
predictions between these two extreme “yes” and “no”
solutions.

Low-exposure levels are:

- Not fully trusted (like they would in a standard
GLM framework);

- Not fully discarded (like they would if we
applied a grouping of non-significant levels).
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What is the idea motivating Credibility?

|
( Distribution of the Observations )
The Buhlmann credibility creates predictions by mixing
tWO Sour‘ces of |nf0rmat|ons: Exposures —e— Observed —e— Buhlmann ==& = Overall Average

- The “pure GLM" predictions, centered on the
observed values;

4000
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- The “a-priori” distribution of the observations, Q
centered on the grand-average.
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What is the idea motivating Credibility?

The Buhlmann credibility creates predictions by mixing
two sources of informations:

- The "pure GLM" predictions, centered on the
observed values;

- The “a-priori” distribution of the
observations,
centered on the grand-average.
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What is the idea motivating Credibility?

The Buhlmann credibility creates predictions by mixing
two sources of informations:

- The "pure GLM" predictions, centered on the
observed values;

- The “a-priori” distribution of the observations,
centered on the grand-average.

More data means the observed values vary less
around the predictions, meaning they can be trusted: a
strong weight is given to the observed values.

Less data means the observed values vary a lot
around the predictions, meaning they can't be trusted:
a strong weight is given to the a-priori (grand
average).
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( Mixing the two distributions
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Quick Reminder... What is Credibility

k\/“CredibiIity, simply put, is
the weighting together of
different estimates to come
up with a combined

estimate.”

Foundations of Casualty Actuarial Science

A AKURS

When the volume of data is not enough to accurately estimate
the losses, Credibility methodologies provide ways to
complement the observed experience with additional

information.

The Credibility formula is:

Estimate = Z * Observed Experience + (1 - Z) * Complement of Credibility

Where the Credibility factor Z is a number between 0 and 1.

This simple equation is reached only for couples of well-chosen

losses and priors.
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Buhlmann Credibility: Computing Z

The modeler decides to use Buhlmann Credibility.

Buhimann's Z for Health-care

The formula for credibility is: e
0.8 1
n f
= ——— ‘g 0.6 1
n+ K £
%
5 0.4
7]
G
Where K can be estimated from the data via 021
standard formulas.
T Kin R* is the ratio between the variances of the two distributions presented 0.0
earlier: mean of conditional variance (in purple, Expected Process Variance, EPV) / 00 02 04 06 08 10 12 14

variance of conditional means (in grey, Variance of the Hypothetical Mean, VHM) Variance Conditional Mean 1/K
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Example: Health Care estimate

Exposures Observed —e— Buhlmann estimates

Large K (low credibility)

Buhlmann estimate value

Weak information on the 800
predictions can be derived 750
from the observations -
(the distributions of the F
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Example: Health Care estimate

Exposures Observed —e— Buhlmann estimates

Medium K (intermediate

Buhlmann estimate value

credibility) 500
Intermediate 750
information on the —
X . . © 700
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9 9 9 o
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. (=]
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Varlance)' 500 ..-:.....................
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Example: Health Care estimate

Exposures Observed —e— Buhlmann estimates
Small K (strong

Buhlmann estimate value

credibility) 500
Strong information on 750
the predictions can be —
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observation (the 650
0 9 Q (o]
distributions of the B e
. ()]
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>
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icti 450 !
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Credibility works on a single dimension!

Credibility hypothesis are on the observed values and predictions,
not the coefficients!

Integration of credibility is done as a post-processing, after the GLM
has been built.

It can be applied to a single variable: it is not a multivariate analysis!

The statisticians who designed our GLMs were
unaware we intended to subject GLM estimates to the
violence of a subsequent round of ad hoc credibility
adjustments. If they had known, they might have
suggested a better starting point than GLM estimates..”

F. Klinker, Generalized Linear Mixed Models for Ratemaking 2010
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( Mixing the two distributions )
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Strengths & limits of Buhlmann Credibility

( Credibility-based Predictions

This approach has also well-documented strengths &

||m |ts: Exposures —e— Observed —e— Buhlmann ==& = Overall Average

It allows to leverage all the available data; 800
700

It is very frequently used and widely accepted;

It relies on very classic statistics;

Average Loss Cost ($)
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two risk estimates.
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Comparing different techniques

Control low-exposure segments to
prevent overfitting

Set coefficients of low-exposure
segments at zero

Shrink low-exposure segments
Work for multivariate models

Creates transparent models
(GLM or additive models)

Natively manage
non-linear effects

Coefficient depending on the
robustness parameter

A AKURS

Levels Selection Credibility

All the techniques presented today aim at controlling overfitting

Selection of effects No selection of effects

This allows to tolerate segments with limited (yet

i usable) data

Yes No

Designed for the GLM framework

These techniques work on “pure GLM” (linear or categorical effects)

P-values significance (%) Ridge merse penly 11
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Enriching the
GLM framework



Why the GLM lacks credibility

GLM coefficients are the maximum of likelihood
(probability of observing the data, given the model):

p* = Argmax Likelihood (Obs., )

The probability of observations is displayed in purple on the
right.

A AKURS CONFIDENTIAL

Average Loss Cost ($)

( Distribution of the Observations )

Number of observations —e— Observed

- GLM estimates === = QOverall Average

800 4000

3500
700

3000
600

2500
500

2000
400 1500

w
o
=i

1000

500

n
=]
o

e, Re, G 7 M, 4
% oy o, g n,
/,ﬁ'oare o S”OO, K e,

Class codes

Exposure

30



The Penalized GLM Formula

Like for Credibility, Penalized Regressions integrate
another prior hypothesis.

But this time, the prior hypothesis is directly on the
coefficient values: we integrate a probability for

different values of the coefficients.

For instance, in the Ridge-regression framework, we
assume coefficients follow a normal distribution:

B~N(0.1/)
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The Penalized GLM Formula

( Mixing the two distribution )

The idea of Penalized Regression is to include a second
hypothesis in the GLM framework: the coefficients have a Exposures —e— Observed —e— Buhimann ==& Overall Average
a-priori distribution.

4000

This prior is visible in the maximum of likelihood definition: e

3000

2

B* = Argmax Likelihood(Obs., B) X a e/

2500

2000

Which means: 1500

1000

B* = Argmax LogLikelihood(Obs.,B) — A B

500

Me, R, G, 7 7 4
Sy &y 7, Ny W,
e, 4 e, 0 e,

This hypothesis looks similar to the Bihlmann credibility but o
applies on the coefficients instead of the observations; they are

Class codes

Exposures

equivalent for a one-dimensional model.
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The Penalized GLM Formula

( Penalized-Regression Coefficients )

The idea of Penalized Regression is to include a second
hypothesis in the GLM framework: the coefficients have a Exposures —e— Observed —e— Buhimann ==& Overall Average

a-priori distribution.

4000
800

This prior is visible in the maximum of likelihood definition: 200 3500
3000

2

B* = Argmax Likelihood(Obs., B) X a e/
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500 2000

Which means: 400 1500

Average Loss Cost (8)
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B* = Argmax LogLikelihood(Obs.,B) — A B
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This hypothesis looks similar to the Buhlmann credibility &
but applies on the coefficients instead of the observations; Class codes
they are equivalent for a one-dimensional model.

Exposures
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The Ridge

The coefficients computed depend on the A parameter.

Ridge estimated value for Health-Care

- For small lambda, the coefficients will be close to a
simple GLM;

- For large lambda, the coefficients will be close to
zero (and the predictions will be close to the
base-level).

v
o
o

Health-care estimate
w -
o
s 8

N
o
o

=
o
o

B* = Argmax LogLikelihood (Obs.,B) — 1 B>

o
L

! ' ! | ' | | '
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
Ridge inverse penalty 1/A

1/Lambda
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Example: Health Care estimate

Large A (large penalty)

Strong prior on the
coefficient (the prior
distribution has a small
variance).

Coefficients and

predictions are close to
the overall average.

A AKURS
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Example: Health Care estimate

Medium A (medium
penalty)

Intermediate prior on
the coefficient (the prior
distribution has a small
variance).

Coefficients and

predictions are further to
the overall average.

A AKURS
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Example: Health Care estimate

Small A (small penalty)

Weak prior on the
coefficient

(the prior distribution has
a large variance).

Coefficients and

predictions are close to
the observed value.

A AKURS
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Blending GLM with Credibility

Penalized GLMs share the same properties as Credibility in the following ways:

1. Both shrink GLM estimates toward the complement of Credibility (grand
average);

2. Both apply more shrinkage to segments with low volume of data / credibility
3. Both based on a Bayesian model, as in Buhlmann Credibility

The theoretical connection between Credibility and Penalized GLM
can be found in:

e  Fry, Taylor. "A discussion on credibility and penalised regression, with
implications for actuarial work" (2015)

° M.Casotto et al. “Credibility and Penalized Regression” (2022) ; this
topic was also presented last year during the CAS seminar.

4.  However, while the Credibility approach can be applied to predictions (or one
variable) after the GLM fit, the ridge regression can be applied to all variables
simultaneously.
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Credibility and Penalized Regression

Mattia Casotto,” Marco Banterle,” Guillaume Beraud-Sudreau”

« *AkurS, France

E-mail: matt: marco. bz 1e@ak
guillaune. beraud@akur8. con

& ABSTRACT: In recent years a number of extensions to Generalized Linear Models (GLMs)

The Insftute will ensure that allre)
author(s) and inciude.

have been developed to address some limitations, such as their inability to incorporate
Credibility-lik fons. Among these ions, Penalized regression techniques,
which blend GLMs with Credibility, are widely adopted in the Machine Learning community
but are not very popular within the actuarial world. While Credibility methods and GLMs
are part of the standard actuarial toolkit of predictive modeling, the actuarial literature
describing how Penalized regression blends Credibility with GLMs is not equally developed.
The aim of this whitepaper is to provide practitioners with key concepts and intuitions that
demonstrate how Penalized regression blends GLM with Credibility-like assumptions. By
walking through a simple example, we will explore how Penalized regression (and Lasso in
particular) can be interpreted from the perspective of both Credibility and GLM frameworks.
The whitepaper objective is to familiarize practitioners with Penalized regression as an
extension of established actuarial techniques, instead of considering it one among several
new modeling techniques from the Machine Learning and Data. Science literature.
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Comparing different techniques

Control low-exposure segments to
prevent overfitting

Set coefficients of low-exposure
segments at zero

Shrink low-exposure segments

Work for multivariate models

Creates transparent models
(GLM or additive models)

Natively manage
non-linear effects

Coefficient depending on the
robustness parameter

A AKURS

Levels Selection

Selection of effects

No

Yes

P-values significance (%)

Credibility Ridge Regression

All the techniques presented today aim at controlling overfitting

No selection of effects

This allows to tolerate segments with limited (yet usable) data

No Yes

Designed for the GLM framework

These techniques work on “pure GLM” (linear or categorical effects)
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Rdge erse penaty 11
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The Penalized GLM Formula: the Lasso

( Prior Distribution of the Coefficients )

Like the Ridge, Lasso-regression framework, assumes

coefficients follow a given distribution.

But this time the distribution used is the Laplace

distribution:
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The Penalized GLM Formula

Ridge-regression also includes a second hypothesis in the
GLM framework: the coefficients a-priori follow the Laplace
distribution.

This prior is included in the maximum of likelihood definition:

—1BI
Which 1 B* = Argmax Likelihood(0bs., B) X a e /%

B* = Argmax LogLikelihood(Obs., ) — A|B|
This 1s very similar to the Kiage regression (and the
credibility), but the distribution used is different. Here it is
very “pointy” (coefficients have a high probability of being
exactly zero).
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( Mixing the two distributions
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Impact of smoothness to Lasso estimates

Exposures Observed —e— Lasso estimates

Large A (large penalty)

Lasso estimate value

. 800
Strong prior on the
coefficient (the prior 750
distribution has a small
variance). Z 700
3
- © 650
Coefficients and 2
. . )
predictions are close to 2 600
the overall average. g
< 550
500 =
450 :
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Impact of smoothness to Lasso estimates

Medium A (medium
penalty)

Intermediate prior on
the coefficient (the prior
distribution has a small
variance)

Coefficients and
predictions are further
to the overall average.

A AKURS
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Impact of smoothness to Lasso estimates

Small A (small penalty)

Weak prior on the
coefficient (the prior
distribution has a large
variance)

Coefficients and
predictions are close to
the observed value.

A AKURS
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Coefficient path graph of the Lasso
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Coefficient path graph of the Lasso
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Coefficient path graph of the Lasso
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Coefficient path graph of the Lasso
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Coefficient path graph of the Lasso
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Coefficient path graph of the Lasso
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Coefficient path graph of the Lasso
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Coefficient path graph of the Lasso
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Coefficient path graph of the Ridge

The same graph can be computed for a Ridge regression
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Comparing different techniques

Control low-exposure segments to
prevent overfitting

Set coefficients of low-exposure
segments at zero

Shrink low-exposure segments

Work for multivariate models

Creates transparent models
(GLM or additive models)

Natively manage
non-linear effects

Coefficient depending on the
robustness parameter

A AKURS

Levels Selection

Selection of effects

No

Yes

P-values significance (%)

Credibility

No

All the techniques presented today aim at controlling overfitting

No selection of effects

Ridge Regression

Yes

Designed for the GLM framework

These techniques work on “pure GLM” (linear or categorical effects)

Ridge nvere penaty 10

e mvrse panaky 1

Lasso Regression

Selection of effects

This allows to tolerate segments with limited (yet usable) data

CONFIDENTIAL

54



GBMs and
Penalized
Regression



Connection between GBMs and Penalized Regression

There is a strong relationship between Credibility and Penalized Regression methods.
There is an equal connection, between Gradient Boosting Machines (GBMs) and Penalized Regression.

Such additional connection highlights the flexibility of the Penalized framework, which can be used to enhance
components of the current methodologies of insurance pricing.
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Introduction to GBM
What is a Boosted Tree?

GBMs are also referred as Boosted Trees.

- Boosted as in Boosting - a learning technique that “learns from the mistakes” by iterating models on
residuals.

- Trees as in Decision Tree - simple model that predicts a target based on decision rules learnt from the
data.
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.
What is a tree ‘

Which class code?
[
A\
Trees estimate losses via recursive if/else decision rules. m m

Rules are inferred from the data in a greedy fashion.

500 $ Loss
2500 Risks
Each possible two way split of the data is evaluated by O L G Gy EEe
comparing the averages of the two complementary
partitions.

The split leading to the biggest likelihood increase will

<5 employees >=5 employees

be selected.
The search is then iterated on each subpopulation until 650 $ Loss 850 $ Loss
one stopping criteria is met, such as: 150 Risks 300 Risks

e  Maximum tree depth;
e  Minimum amount observation per leaf;
e  Min deviance gain...
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Which class code?

Application: Worker Compensation

Number of observations —®— Observed ==== Overall Average
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—Which class code?—l
A\

Health Care (No/Yes)

Application: Worker Compensation

[ Number of observations —®— Observed === = Overall Average b
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Application: Worker Compensation
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WC Data

Which class code?

Application: Worker Compensation

\ \
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Application: Worker Compensation

Which class code?
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Application: Worker Compensation

The tree split the dataset between Mining and
Not Mining, leading to two different predictions.

In a GBM, the first tree is the first step of the
learning procedure: the boosting.

The boosting procedure consist of three steps:

A AKURS

Exposures —e— Observed —e— Tree Estimates
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Application: Worker Compensation

Exposures —e— Tree Residuals

The tree split the dataset between Mining and 200 4000
Not Mining, leading to two different predictions. 5565
. . . 200
In a GBM, the first tree is the first step of the 3000
learning procedure: the boosting. 100
D / 2500 g
: . . © /\/\ =
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Application: Worker Compensation

Exposures —e— Tree Residuals —e— Tree Estimates

The tree split the dataset between Mining and 200 4000
Not Mining, leading to two different predictions. 5565
) . . 200
In a GBM, the first tree is the first step of the 3000
learning procedure: the boosting. 100
D / 2500 ¢
: . . © /\/\ =
The boosting procedure consist of three steps: 3 0 \ - N — 2000 3
o
1. Compute the residuals -100 1500
. 1000
2. Fita new tree *a0h
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Application: Worker Compensation

Exposures —e— Observed —e— Tree Estimates

The tree split the dataset between Mining and Not 800 4000
Mining, leading to two different predictions. 5565
700
In a GBM, the first tree is the first step of the - 3000
learning procedure: the boosting. & 600
8 2500 @
The boosting procedure consist of three steps: g 500 5606 2
E ] &
1. Compute the residuals g 40 1500
<
1000
2. Fitanew tree *0
556 500
3.  Compute the estimates by summing the

previous trees 0

A A C Yy M A
ea/“‘oe h et Y /0/’79 a%fa g%‘//l(, ’ Moo Oodé‘e/-lz
. 7 7 Uy, 70 7%
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Coefficient path graph of a GBM

Workers Compensation example
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Coefficient path graph of a GBM

Workers Compensation example
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Coefficient path graph of a GBM

Workers Compensation example
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Coefficient path graph of a GBM

Workers Compensation example
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Coefficient path graph of a GBM
Workers Compensation example

Exposures = Observed —e— GBM estimates
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Coefficient path graph of a GBM
Workers Compensation example

Exposures = Observed —e— GBM estimates
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Coefficient path graph of a GBM

Workers Compensation example

Exposures = Observed —e— GBM estimates
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Coefficient path graph of a GBM
Workers Compensation example

Exposures = Observed —e— GBM estimates
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Coefficient path graph of a GBM
Workers Compensation example

Exposures = Observed —e— GBM estimates
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Boosting and stepwise learning

|
In the simple Worker Compensation example, the GBM

learns as in a forward stepwise procedure, by
iteratively:

1. Selecting the most important feature.

2. Including (fitting) the effects.

Forward stepwise procedures work well in a very
simple case like here, but they are known to not
handle correctly correlated variables.

For a similar reason, boosting procedures are always
combined with a learning rate to improve the
model’s ability to generalize.

Number of Trees
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The learning rate

| Exposures —e— Observed
—e— Tree Estimates —o— Tree with Learning Rate
The learning rate is a constant between 0 and
1 that mitigates the contribution of an 800 4000
individual tree to the overall prediction. 3500
700
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inli i 600 :
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o o
. . @ 500 o o o 2
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Learning rate = 0.5
Estimate evolution until 40 trees

Exposures = Observed —e— GBM estimates
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Learning rate = 0.3
Estimate evolution until 80 trees

Average Loss Cost ($)

Exposures = Observed —e— GBM estimates
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Learning rate = 0.05

Estimate evolution until 350 trees

Average Loss Cost ($)

Exposures = Observed —e— GBM estimates
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Toward the coefficient path graph

The graph on the right represents the
evolution of the estimates by the number
of trees.

Number of Trees
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Toward the coefficient path graph

The graph on the right represents the evolution
of the estimates by the number of trees.

The same graph can be represented by
rescaling the x-axis in the same scale as in
penalized regression (to fit a 0-100% range).

0 0.2 0.4 0.6 0.8
Rescaled 1/A (to fit a 0-100% range)
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Comparing Lasso and GBM

Lasso Coefficient path GBM (Learning Rate = 0.05)

m——p————
0% 20% 40% 60% 80% 100% 0 0.2 0.4 0.6 0.8 1
Rescaled 1/A (to fit a 0-100% range) Rescaled 1/A (to fit a 0-100% range)
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Boosting converges to the Lasso

The convergence of boosting toward Lasso solution is a proven

mathematical result.

1. GBMs provide a good approximation of a Lasso regression;

2. Both GBMs and Lasso allow to tune a parameter in order to
control the training error and ability to generalise,
a. GBMs via the combination of number of trees -
learning rate (and many other tree-related
parameter);

b. Lasso via the smoothness parameter.

A AKURS CONFIDENTIAL

ASTIN, AFIR/ERM
and IACA
Colloquia

Innov: on

A

A discussion on credibility and penalised
regression, with implications for actuarial
work

P o———

2004, W0 32N 2467459
Prepan & smaissest i Sisten, 2004

LEAST ANGLE REGRESSION

Presented fc
ASTIN, AFIR/E|

BY BRADLEY EFRON,' TREVOR HASTIE,? IAIN JOHNSTONE®
AND ROBERT TIBSHIRANI*

Stanford University

‘The purpose of model selection algorithms such as All Subsets, Forward
Selection and Backward Elimination s to choose a linear model on the
basis of the same set of data to which the model will be applied. Typically
we have svailable a large collection of possible covariates from which we
hope 10 seleet a parsimonious set for the efficient prediction of a response
vasisble. Least Angle Regression (LARS), a new model selection algorithm,
is a useful and less greedy version of teaditional forward selection methods.
Three main properties are derived: (1) A simple modification of the LARS
The Insfitute wil ensure fhot ol ref algorithm implements the Lasso, an attractive version of ordinary least

authorls) and include squares that constraing the sum of the sbsolute regression coefficients;
the LARS modification calculstes all possible Lasso estimates for a given
problem, using an order of magnitude less computer time than previous
methods. (2) A different LARS modification efficiently implements Forward
Stagewise linear regression, another promising new model selection method;
this connection explains the similar numerical results previously observed
for the Lasso and Stagewise, and helps us understand the peoperties of
both methods, which are seen as constrained versions of the simpler LARS
algorithm. (3) A simple appeoximation for the degrees of freedom of a LARS
estimate is available, from which we derive a C estimate of prediction eeror;
this allows a principled choice smong the range of possible LARS estimates.
LARS and its variants are computstionally efficient: the paper describes
a publicly available algorithm that requires only the same order of magnitude
of computational effort s ordinary least squares applied to the full set of

covariates.
1. ic model-building i are familiar, and
sometimes notorious, in the linear model literature: Forward Selection, Backward
imination, All Subsets ion and various inations are used to auto-

matically produce “good” linear models for predicting a response y on the basis
of some measured covariates xj, X3, ..., X,. Goodness is often defined in terms
of prediction accuracy, but parsimony is another important criterion: simpler mod-
els are preferred for the sake of scientific insight into the x — y relationship. Two
promising recent model-building algorithms, the Lasso and Forward Stagewise lin-
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What about
Ordinal
variables?



Comparing GBM and Penalized Regression

Control low-exposure
segments to prevent
overfitting

Work for multivariate
models

Creates transparent models
(GLM or additive models)

Natively manage
non-linear effects

A AKURS

Lasso Regression

GBM

All the techniques presented today aim at controlling overfitting

Yes; apply the same priors / rules for all levels

Designed for the GLM framework

No - Requires non-linearities to be explicitly specified

No - Output
usually not transparent

Yes
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What about Ordinal variables?

The Worker Compensation example highlights the connection between GBMs and Lasso for categorical
variables.

The main benefit of a GBM is its ability to natively fit non-linear effect on ordinal variables.
At a first glance, Penalized Regressions seem unable to natively fit non-linear effects.

We will show that, by analyzing how GBMs incorporate non-linearities, it is possible to incorporate the same
learning procedures to Penalized regression.
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GBM and Ordinal variables

GBMs
combi

1.

A AKURS

natively handles non-linear effects by
ning

Trees

Detects the location on where to split the
ordinal variables in two region

Boosting

Adaptively learns structure from the residuals /

errors
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GBM and Ordinal variables

GBMs
combi

A AKURS

natively handles non-linear effects by
ning

Trees

Detects the location on where to split the
ordinal variables in two region

Boosting

Adaptively learns structure from the residuals /

errors
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Lasso and Ordinal variables

|
GBMs natively handles non-linear effects by
combining
1. Trees
Detects the location on where to split the
ordinal variables in two region
2. Boosting

A AKURS

Adaptively learns structure from the residuals /

errors

GBM Estimate =Tree 1 + Tree 2
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Lasso and Ordinal variables

GBMs natively handles non-linear effects by
combining

1. Trees

Detects the location on where to split the
ordinal variables in two region

2. Boosting

Adaptively learns structure from the
residuals / errors

A AKURS
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Lasso and Ordinal variables

GBMs natively handles non-linear effects by
combining
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Detects the location on where to split the
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2. Boosting
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A AKURS
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Lasso and Ordinal variables

GBMs natively handles non-linear effects by
combining

1. Trees

Detects the location on where to split the
ordinal variables in two region

2. Boosting

Adaptively learns structure from the
residuals / errors

A AKURS
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Lasso and Ordinal variables

GBMs natively handles non-linear effects by
combining

1. Trees

Detects the location on where to split the
ordinal variables in two region

2. Boosting

Adaptively learns structure from the
residuals / errors

A AKURS
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Lasso and Ordinal variables

GBMs natively handles non-linear effects by
combining

1. Trees

Detects the location on where to split
the ordinal variables in two region

2. Boosting

Adaptively learns structure from the
residuals / errors

A AKURS
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The impact of the Learning Rate

GBMs natively handles non-linear effects by
combining

Exposures —e— Observed —e— GLM estimates
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Allows to incrementally adapt the trees to

the signal, making the model ‘smoother’ and
more robust to correlations
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The impact of the Learning Rate

[
GBM Estimate = 0.5 * Tree 1

GBMs natively handles non-linear effects by
combining

Exposures —e— Observed —e— GBM estimates
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The impact of the Learning Rate

[
GBM Estimate =0.5*Tree 1+ 0.5 * Tree 2

GBMs natively handles non-linear effects by
combining
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The impact of the Learning Rate

[
GBM Estimate =0.5*Tree 1 +...+ 0.5* Tree 3

GBMs natively handles non-linear effects by ,
.. Exposures —e— Observed —e— GBM estimates
combining
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The impact of the Learning Rate

[
GBM Estimate=0.5*Tree 1 +...+ 0.5* Tree 4

GBMs natively handles non-linear effects by
combining

Exposures —e— Observed —e— GBM estimates
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The impact of the Learning Rate

[
GBM Estimate=0.5*Tree 1 +...+ 0.5*Tree 5

GBMs natively handles non-linear effects by ,
.. Exposures —e— Observed —e— GBM estimates
combining

1. Trees ! 35k

Detects the location on where to split the
ordinal variables in two region

2. Boosting
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Allows to incrementally adapt the trees to Vehicle Age

the signal, making the model ‘smoother’ and
more robust to correlations
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The impact of the Learning Rate

[
GBM Estimate =0.5*Tree 1 +...+ 0.5* Tree 6

GBMs natively handles non-linear effects by
combining

Exposures —e— Observed —e— GBM estimates
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The impact of the Learning Rate

[
GBM Estimate=0.5*Tree 1 +...+ 0.5* Tree 7

GBMs natively handles non-linear effects by
combining

Exposures —e— Observed —e— GBM estimates
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The impact of the Learning Rate

[
GBM Estimate =0.5*Tree 1 +...+ 0.5* Tree 8

GBMs natively handles non-linear effects by
combining

Exposures —e— Observed —e— GBM estimates

1. Trees

Detects the location on where to split the

ordinal variables in two region 3 . 20K
(2 20k é
2. Boosting k g
%‘10 15k 3
Adaptively learns structure from the E ok
residuals / errors -20

3. Learning Rate

-30

5 10 15
Allows to incrementally adapt the trees to

the signal, making the model ‘smoother’
and more robust to correlations

Vehicle Age

A AKURS CONFIDENTIAL 1ot



The impact of the Learning Rate

[
GBM Estimate =0.5*Tree 1 +...+ 0.5* Tree 9

GBMs natively handles non-linear effects by
combining

Exposures —e— Observed —e— GBM estimates
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The impact of the Learning Rate

[
GBM Estimate =0.5*Tree 1 +...+ 0.5* Tree 10

GBMs natively handles non-linear effects by
combining

Exposures —e— Observed —e— GBM estimates
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The impact of the Learning Rate

[
GBM Estimate =0.5*Tree 1 +... + 0.5 * Tree 11

GBMs natively handles non-linear effects by
combining

Exposures —e— Observed —e— GBM estimates

1. Trees

Detects the location on where to split the

ordinal variables in two region 3 . 20K
é 20k é
2. Boosting k g
%‘10 15k 3
Adaptively learns structure from the residuals / E ok
errors -20

3. Learning Rate

-30
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Allows to incrementally adapt the trees to the

signal, making the model ‘smoother’ and more
robust to correlations.
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How GBMs ‘learn’ ordinal variables

These visual examples highlight how GBM effectively learn non-linearities:

1. The most significant split (the ‘derivative’) is computed;
2. Thelearning rate defines the amount of signal to be learnt (hence controlling for smoothing);

3.  The number of trees defines the stopping point to prevent overfitting.

Penalized regression can replicate this structure by using an appropriate prior distribution (or penalty): the
derivative Lasso.
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The derivative
Lasso



Creating new Priors and Penalties

Gr‘ouplng is Statlstlca”y eqUIValent to the Exposure train == Coefficient (%) ~#— Predicted (%) == Observed (%)
assumption that the coefficients of two
consecutive levels:

e Are more likely to be close than far apart
if they are significantly different;

e Or have the same coefficients if they are
not significantly different...
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Creating new Priors and Penalties

As the values of the coefficients are discrete, the
derivative can be written as:

This distribution of probability is used as a prior
when maximizing the likelihood to fit a model:

p(ﬁ) a e_)' |Bi_ﬁi+1|

This means that the derivative of the (ordinal)
variable follows a Laplace distribution:

Exposure train == Coefficient (%) ~—# Predicted (%) =—#= Observed (%)

B* = Argmaxg LL(x,y,B) — A |B; — Bi+1l
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Very Strong Smoothness & Full reliance on the prior

Exposure train =@ Coefficient (%) -#— Predicted (%) =#— Observed (%)
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Strong Smoothness & Very weak reliance on the observation
The weight of the observation in the model is weaker than the priors

|
Exposure train == Coefficient (%) - Predicted (%) == Observed (%)
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Average Smoothness & Weaker reliance on the observation
The final model is an average between the most likely coefficients according to the prior
and the observations

Exposure train == Coefficient (%) - Predicted (%) == Observed (%)
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Weak Smoothness & Strong reliance on the observation
The prior has a very limited impact on the final model

I
Exposure train = Coefficient (%) - Predicted (%) =#=— Observed (%)
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Lasso and Ordinal variables

Under these “Lasso” assumption on the derivative, penalized
regression can natively incorporate non-linear effects.

Furthermore, the convergence result between GBMs and Lasso 20
is still valid.

To control the training error and ability to generalise:

- Penalized Regression require the definition of a single
parameter: the smoothness

Average Loss Cost ()

- GBMs require to determine the combination of several
parameters:

- number of trees
- learning rate
- and other tree-related parameters

Exposures —e— Observed —e— GLM estimates
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Lasso and Ordinal variables

Under these “Lasso” assumption on the derivative, penalized
q q Q . Exposures —e— Observed —e— GLM estimates
regression can natively incorporate non-linear effects.

Furthermore, the convergence result between GBMs and Lasso 20
is still valid.

w
w
=

w
o
=

To control the training error and ability to generalise:

N
w
=

- Penalized Regression require the definition of a single

parameter: the smoothness -

Average Loss Cost ()
S
tu
Exposures

- GBMs require to determine the combination of several 10k
parameters:

- number of trees
- learning rate 5 10 15
- and other tree-related parameters

Vehicle Age

A AKURS CONFIDENTIAL



Lasso and Ordinal variables

Under these “Lasso” assumption on the derivative, penalized
regression can natively incorporate non-linear effects.

Furthermore, the convergence result between GBMs and Lasso 20
is still valid.

To control the training error and ability to generalise:

- Penalized Regression require the definition of a single
parameter: the smoothness

Average Loss Cost ()

- GBMs require to determine the combination of several
parameters:

- number of trees
- learning rate
- and other tree-related parameters

Exposures —e— Observed —e— GLM estimates

5 10

Vehicle Age

15

N w w
(31 o ol
= = =

N

o

=
Exposures

15k

10k

5k

A AKURS CONFIDENTIAL



Lasso and Ordinal variables

Under these “Lasso” assumption on the derivative, penalized
q q Q . Exposures —e— Observed —e— GLM estimates
regression can natively incorporate non-linear effects.

Furthermore, the convergence result between GBMs and Lasso 20
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Lasso and Ordinal variables

Under these “Lasso” assumption on the derivative, penalized
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Lasso and Ordinal variables
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Lasso and Ordinal variables
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Lasso and Ordinal variables

Under these “Lasso” assumption on the derivative, penalized
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Conclusion



Comparing GBM and Penalized Regression

Control low-exposure
segments to prevent
overfitting

Work for multivariate models

Creates transparent models
(GLM or additive models)

Natively manage non-linear
effects

A AKURS

Lasso Regression

GBM

Derivative Lasso

All the techniques presented today aim at controlling overfitting

Designed for the GLM framework

No - Requires non-linearities to be
explicitly specified

Yes; apply the same priors / rules for all levels

No - Output
usually not transparent

Yes

Designed for the GLM framework
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Conclusion

Penalized regression offers a flexible and theoretically sound framework to tackle and address the GLM's drawbacks.
It does so in an accessible way:

- Penalized regression require the choice of only one parameter: the smoothness

- Smoothness relates to known credibility techniques
- Penalized regression require little to no investment cost

- Inputs and outputs are equal to GLMs - adding penalizations to GLM is straightforward via software
- Potentially unlock use-cases not previously considered for modeling

- Via complement of credibility, it is possible to gradually update current models to new ones

- GLMs can be used as a data analysis alternative as modeling effort is reduced since non-linearities are
natively handled.
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The big picture

Levels Credibility Ridge Lasso GBM Derivative
Selection Regression Regression Lasso
Control low-exposure . . . .
segments to prevent All the techniques presented today aim at controlling overfitting
overfitting I I I
Set coefficients of Selection of No selection of effects Selection of effects, allowing binary decisions (if the
low-exposure segments at effects effects are visualized - not always true for GBMs)
zero ! ! !
Shrink low-exposure No This allows to tolerate segments with limited (yet usable) data
segments . . .
Work for multivariate Yes No Yes; apply the same priors / rules for all levels
models
[
Creates transparent models Usually, output Additive
(GLM or additive models) Designed for the GLM framework not del
. . . transparent moaels
Natively manage : ; .
non-linear effects These techniques work on “pure GLM" (linear or categorical effects) Yes
Coefficient depending on gg;
the robustness parameter
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Is the convergence result a desirable property ?
Smaller learning rate corresponds to better models, but at a cost

| Exposures —e— Observed
—e— Tree Estimates —o— Tree with Learning Rate
In GBMs the smaller the learning rate the better 800 4000
. 3500
1. Smaller learning rates lead to more performant 200
and robust models - as they handle better 2000
correlations @
7 600
. . : o 2500 ,
2. Smaller learning rates require to build many e o
=
more trees g 500 e < . °  [2000 &
- a
- . : : > i
The only limit of choosing a smaller learning rate in a g 400 1500
GBM is the time required to build the models. z
300 1000
Lasso being equivalent to a very little learning rate 55 500
is a desirable property.
0
A y, . A
@e/,/;\e Sty sy, //;,,,g 6,7% e, w, e OOUSG
e’@ ’/0/7 < 0, e rl//bes
Class codes
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Interpretability and anti-selection

The GAM structure allows a full control of the actuary against anti-selection risk.

Exposure train =@ Observed Average (%) -#— Fitted Average (%) —#— Coefficient value (%)
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1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 2.0 10.0 11.0 12.0 13.0 14.0 15.0

# Rooms
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Interpretability and anti-selection

I
The GAM structure allows a full control of the actuary against anti-selection risk.

Exposure train =@ Initial Coefficient value (%) == Observed Average (%) -#- Fitted Average (%) --#— Coefficient value (%)
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The Models Life-cycle

The first layer of modeling is created by a
machine-learning algorithm, leveraging the
credibility principles described above.

The model created by this algorithm is additive
(table-based model). It can be visualized, fully
understood and modified if needed.

The output of the modeling process is a
table-based model. It is fully transparent and can
be analyzed and validated with no difficulties.

A AKURS

GLOBAL PARAMETERS
e Smoothness level e Explanatory Variables
e Parsimony level e Target Variable
FIT
e

DATA

MODEL PARAMETERS

e Effect functions values
Fitted from a purely data-driven process

ADAPT
L

FINAL MODEL PARAMETERS

CONFIDENTIAL

e Effect functions values, based on expertise, to ensure
safe extrapolation on low-data segments

VALIDATE
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Extending the
framework



Akur8 vs. Black-box models: control of the understanding

Akur8 allows the creation of complex GLMs which can be compared to black-box models.
However, the main benefit of the GLMs approach is to provide a control over the complexity / performance trade-off.

Best models with

Bad models

Simple GLM

No Model Linear Models

A
Complex GLM

Black-box
models
(GBMs,

RF, NN...)

Higher Accuracy

Better Understanding
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Applying to Interactions

The same principle can be applied in two dimensions,
to fit interactions. The prior there is slightly different

to take into account the 2-D nature of the problem. Veh'&cglg A
44 @ ©) ) ) )
For instance, on an interaction between two ordered
variables, we could suppose as prior that the
1 u n 3 = . . , . .
differences between all the “connected” levels are D
supposed to follow a Laplace distribution. ~N
24 @ o oo e
The prior term would become: <
14 @ ) ) ) )
Penalty(p) = -+ + 1|.318,2 - ﬁ19,2|
+2|B1sz — 17,2 . o o o o o
+/1|ﬁ18,2 - ﬁ18,1|
1 1 1 1 1 >
+2|B1g2 — Bigs| + - 16 17 18 19 20 Driver Age
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Applying to Interactions

The interactions generated by applying this kind of priors would naturally extend the properties of models to interactions, allowing to
identify the relevant ones and fit them automatically.

—#— Observed (%) Exposure train
500.0%
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100.0%

Relative values
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o o
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-100.0%

#— Predicted (%) = Coefficient (%)

15k
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Applying to Geography

Geographic modeling can also be achieved with a similar
method : the prior is that nearby locations are expected to
have similar risk levels.

This has strong similarities to a Gaussian Process modeling.

A AKURS
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The coefficient path graph

How to ‘rescale’ the impact of the penalty

It is possible to generalize this graph, tracking the impact of penalty on Coefficient path
several levels simultaneously. Health- Care

Mining
The ‘coefficient path graph’ allows to globally analyse how the estimates

/coefficient evolve when the smoothness increases: )
Food Services

Construction

- Y axis represents the value of the estimates. /Manufacturing
- Xaxis represents the ‘Empirical Credibility’ - which is a ‘Proportion e
of the GLM solution) Retail
Agriculture
.. o |Predicted; — Grand Average|
E 1 Credibility =
e iemzmes |GLM; — Grand Average|
Finance
0 0.2 0.4 0.6 0.8 1

- Empirical Credibility = 100 % - Estimates match the observed
- Empirical Credibility = 0 % - Estimates match the Grand Average (or Proportion of GLM solution
complement of credibility)
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Coefficient path graph of the Lasso

Workers Compensation example

Exposures — +  Observed —e— GLM estimates
Coefficient path
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Lasso and Ordinal variables

Under these “Lasso” assumption on the derivative, penalized
q q Q . Exposures —e— Observed —e— GLM estimates
regression can natively incorporate non-linear effects.

Furthermore, the convergence result between GBMs and Lasso 20
is still valid.

w
w
=

w
o
=

To control the training error and ability to generalise:

N
w
=

- Penalized Regression require the definition of a single

parameter: the smoothness -

Average Loss Cost ()
S
tu
Exposures

- GBMs require to determine the combination of several 10k
parameters:

- number of trees
- learning rate 5 10 15
- and other tree-related parameters

Vehicle Age
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