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1!
VaR, (L) :=min{x € R: P[L <x] > o} and ES,(L) := 1a / VaR, (L)du ~ E[L | L > VaRq(L)]
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PoQAl= | QA|X=axn(dx), AcF,

JRd

where 7 is the distribution of X = (Xi, ..., Xy)
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Conditional Expectations as Minimizing Functions
o L =EF®Q[y | X] is the L*-projection of ¥ on L*(FX)

B0 (v~ 1] = min B9 [(v 0]

o Least Squares Monte Carlo
— 1 i i\ 2
imulate (X’, ¥’) and sol in — Y —f(X
simulate (X, ¥/) and solve %1‘?]2( F(x)

over a subfamily S of all Borel functions f: RY — R.
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Least Squares Regression

@ linear regression on polynomials  Longstaff and Schwartz (2001), Ha and Bauer (2021)
e regression trees  Boudabsa and Filipovié¢ (2022)

o neural network regression  Kohlen et al (2010), Fiore et al. (2018), Cheridito et al. (2020)
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Monte Carlo Estimation of VaR and ES

o LetX',... X" be independent P-simulations of X = (X1, ..., X4)

@ Denote by XM X" the reordered sample so that

L(]) :fG(X(l)) Z . Z L(”) :fg(X(n))

e Apply VaR,, and ES,, to the empirical measure 1 o
=200
i=1

L
_ . /\ 1 = LO® ji—1 )
VaR,, (n) = LY ESa(n) = > - —=—— | LY
~ aR,, (n) and (n) —al s + ( i a)n) ;
where

j=min{ie{l,...,n}:i/n>1—-a}

there exist convergence rates

see. e.g., David and Nagaraja (2003) and Zwingmann and Holzmann (2016)
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e Sample more frequently from the tail of L when estimating VaR, and ES,

@ by shifting the original distribution of X = (X, . ..

@ so that L = f(X) has more weight in the tail

. PY @0
o note that [ = argmin,, zi K eu [(Y — Ap(X))z}
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Computation of Conditional Expectations with Guarantees

Goal Derive an alternative representation of the minimal L-distance
Y

min [[Y —f(X)[l2 = [|Y = E[Y | X]|}»
:RISR

!

Assumption Y is of the form ¥ = /2(X, V) for a known function 4 : R*™* — R and a k-dim random vector V
independent of X

Define 7 = h(X, V) for an independent copy V of V

Theorem  [|Y — E[Y | X]||; = E[Y(Y — Z)]
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2 . . . P 1 7
ES. is L*- Lipschitz-continuous: |ESq(f(X)) — ESa (f(X). < me(X) — X2y

Problem: for a = 0.99, ; =100
11—«
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Guarantees for Numerical Approximations
o Numerical approximation L = f(X) = L = f(X)

1 N 1
@ Denote Po = ml{LZVar&(L)} - P, P = ml{ZZVara(i)} P

Theorem  [ESa(L) —ESa(L)| < ||IL—L||op ) V1L =Ll 26,

can be estimated

o We assume ||L —L

)%HL_I:’

L2(Pq L2(Ba)



Numerical Results

‘ ]:Zga(li) ‘ error ‘ relative error ‘

Option Portfolio
1420 | £1.7 +12%

1046 | £1.5 +14%

Variable Annuity




Thank You!



