Computing Capital Requirements with Guarantees

Patrick Cheridito and Moritz Weiss RiskLab, ETH Zurich

Insurance Data Science Conference, Stockholm

June 18, 2024

 $0 = \text{current time} \quad \tau = \text{risk horizon (e.g. 1 year)}$

 $0 = \text{current time} \quad \tau = \text{risk horizon (e.g. 1 year)}$

• All relevant information at time τ is given by a random vector $X = (X_1, \dots, X_d)$

 $0 = \text{current time} \quad \tau = \text{risk horizon (e.g. 1 year)}$

- All relevant information at time τ is given by a random vector $X = (X_1, \dots, X_d)$
- Portfolio value at time τ :

$$V = v(X) + \mathbb{E}^{\mathbb{Q}}\left[\sum_{i=1}^{I} rac{N_{ au}}{N_{t_i}} C_{t_i} \mid X
ight]$$

 $0 = \text{current time} \quad \tau = \text{risk horizon (e.g. 1 year)}$

- All relevant information at time τ is given by a random vector $X = (X_1, \dots, X_d)$
- Portfolio value at time τ :

$$V = v(X) + \mathbb{E}^{\mathbb{Q}}\left[\sum_{i=1}^{I} rac{N_{ au}}{N_{t_i}} C_{t_i} \mid X\right], ext{ where}$$

 $v : \mathbb{R}^d \to \mathbb{R}$, \mathbb{Q} is a pricing measure, $0 < \tau < t_1 < ... < t_I$, C_{t_i} are future cash flows, N_{t_i} is a numeraire process

 $0 = \text{current time} \quad \tau = \text{risk horizon (e.g. 1 year)}$

- All relevant information at time τ is given by a random vector $X = (X_1, \dots, X_d)$
- Portfolio value at time τ :

$$V = v(X) + \mathbb{E}^{\mathbb{Q}}\left[\sum_{i=1}^{I} rac{N_{ au}}{N_{t_i}} C_{t_i} \mid X
ight], ext{ where}$$

 $v : \mathbb{R}^d \to \mathbb{R}$, \mathbb{Q} is a pricing measure, $0 < \tau < t_1 < ... < t_I$, C_{t_i} are future cash flows, N_{t_i} is a numeraire process

• Loss at time τ : $L = -V = \mathbb{E}^{\mathbb{Q}}[Y \mid X]$

 $0 = \text{current time} \quad \tau = \text{risk horizon (e.g. 1 year)}$

- All relevant information at time τ is given by a random vector $X = (X_1, \dots, X_d)$
- Portfolio value at time τ :

$$V = v(X) + \mathbb{E}^{\mathbb{Q}}\left[\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_i}} C_{t_i} \mid X\right], \text{ where }$$

 $v : \mathbb{R}^d \to \mathbb{R}$, \mathbb{Q} is a pricing measure, $0 < \tau < t_1 < ... < t_I$, C_{t_i} are future cash flows, N_{t_i} is a numeraire process

• Loss at time τ : $L = -V = \mathbb{E}^{\mathbb{Q}}[Y \mid X]$, where

$$Y = -v(X) - \sum_{t=1}^{I} \frac{N_{\tau}}{N_{t}} C_{t_i}$$

 $0 = \text{current time} \quad \tau = \text{risk horizon (e.g. 1 year)}$

- All relevant information at time τ is given by a random vector $X = (X_1, \dots, X_d)$
- Portfolio value at time τ :

$$V = v(X) + \mathbb{E}^{\mathbb{Q}}\left[\sum_{i=1}^{I} \frac{N_{ au}}{N_{t_i}} C_{t_i} \mid X\right], \text{ where }$$

 $v : \mathbb{R}^d \to \mathbb{R}$, \mathbb{Q} is a pricing measure, $0 < \tau < t_1 < ... < t_l$, C_{t_i} are future cash flows, N_{t_i} is a numeraire process

• Loss at time τ : $L = -V = \mathbb{E}^{\mathbb{Q}}[Y \mid X]$, where

$$Y = -v(X) - \sum_{t=1}^{I} \frac{N_{\tau}}{N_{t}} C_{t_i}$$

• We are interested in Value-at-Risk (for $\alpha = 99.5\%$) and Expected Shortfall (for $\alpha = 99\%$)

 $0 = \text{current time} \quad \tau = \text{risk horizon (e.g. 1 year)}$

- All relevant information at time τ is given by a random vector $X = (X_1, \dots, X_d)$
- Portfolio value at time τ :

$$V = v(X) + \mathbb{E}^{\mathbb{Q}}\left[\sum_{i=1}^{I} \frac{N_{ au}}{N_{t_i}} C_{t_i} \mid X\right], \text{ where }$$

 $v : \mathbb{R}^d \to \mathbb{R}$, \mathbb{Q} is a pricing measure, $0 < \tau < t_1 < ... < t_I$, C_{t_i} are future cash flows, N_{t_i} is a numeraire process

• Loss at time τ : $L = -V = \mathbb{E}^{\mathbb{Q}}[Y \mid X]$, where

$$Y = -\nu(X) - \sum_{t=1}^{I} \frac{N_{\tau}}{N_{t}} C_{t_i}$$

• We are interested in Value-at-Risk (for $\alpha = 99.5\%$) and Expected Shortfall (for $\alpha = 99\%$)

$$\operatorname{VaR}_{\alpha}(L) := \min \left\{ x \in \mathbb{R} : \mathbb{P}[L \leq x] \geq \alpha \right\} \text{ and } \operatorname{ES}_{\alpha}(L) := \frac{1}{1 - \alpha} \int_{-1}^{1} \operatorname{VaR}_{u}(L) du$$

 $0 = \text{current time} \quad \tau = \text{risk horizon (e.g. 1 year)}$

- All relevant information at time τ is given by a random vector $X = (X_1, \dots, X_d)$
- Portfolio value at time τ :

$$V = v(X) + \mathbb{E}^{\mathbb{Q}}\left[\sum_{i=1}^{I} \frac{N_{\tau}}{N_{t_i}} C_{t_i} \mid X\right], \text{ where }$$

 $v : \mathbb{R}^d \to \mathbb{R}$, \mathbb{Q} is a pricing measure, $0 < \tau < t_1 < ... < t_I$, C_{t_i} are future cash flows, N_{t_i} is a numeraire process

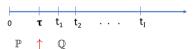
• Loss at time τ : $L = -V = \mathbb{E}^{\mathbb{Q}}[Y \mid X]$, where

$$Y = -\nu(X) - \sum_{t=1}^{I} \frac{N_{\tau}}{N_{t}} C_{t_i}$$

• We are interested in Value-at-Risk (for $\alpha = 99.5\%$) and Expected Shortfall (for $\alpha = 99\%$)

$$\operatorname{VaR}_{\alpha}(L) := \min \left\{ x \in \mathbb{R} : \mathbb{P}[L \leq x] \geq \alpha \right\} \text{ and } \operatorname{ES}_{\alpha}(L) := \frac{1}{1-\alpha} \int_{0}^{1} \operatorname{VaR}_{u}(L) du \approx \mathbb{E}[L \mid L \geq \operatorname{VaR}_{\alpha}(L)]$$

Pasting together the *real* world measure \mathbb{P} and the pricing measure \mathbb{Q}



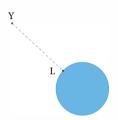
Pasting together the real world measure \mathbb{P} and the pricing measure \mathbb{Q}

$$\mathbb{P}\otimes\mathbb{Q}[A]=\int_{\mathbb{R}^d}\mathbb{Q}[A\mid X=x]\pi(dx),\quad A\in\mathcal{F},$$

where π is the distribution of $X = (X_1, \dots, X_d)$

Conditional Expectations as Minimizing Functions

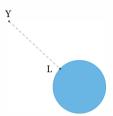
ullet $L=\mathbb{E}^{\mathbb{P}\otimes\mathbb{Q}}[Y\mid X]$ is the L^2 -projection of Y on $L^2(\mathcal{F}^X)$



Conditional Expectations as Minimizing Functions

•
$$L = \mathbb{E}^{\mathbb{P} \otimes \mathbb{Q}}[Y \mid X]$$
 is the L^2 -projection of Y on $L^2(\mathcal{F}^X)$

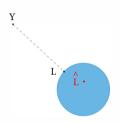
$$\mathbb{E}^{\mathbb{P}\otimes\mathbb{Q}}\left[(Y-L)^2\right] = \min_{f:\,\mathbb{R}^d \to \mathbb{R}} \, \mathbb{E}^{\mathbb{P}\otimes\mathbb{Q}}\left[(Y-f(X))^2\right]$$



Conditional Expectations as Minimizing Functions

• $L = \mathbb{E}^{\mathbb{P} \otimes \mathbb{Q}}[Y \mid X]$ is the L^2 -projection of Y on $L^2(\mathcal{F}^X)$

$$\mathbb{E}^{\mathbb{P} \otimes \mathbb{Q}} \left[(Y - L)^2 \right] = \min_{f : \mathbb{R}^d \to \mathbb{R}} \, \mathbb{E}^{\mathbb{P} \otimes \mathbb{Q}} \left[(Y - f(X))^2 \right]$$



• Least Squares Monte Carlo

simulate
$$(X^j, Y^j)$$
 and solve $\min_{f \in \mathcal{S}} \frac{1}{J} \sum_{i=1}^{J} (Y^j - f(X^j))^2$

over a subfamily S of all Borel functions $f: \mathbb{R}^d \to \mathbb{R}$.

Least Squares Regression

• linear regression on polynomials Longstaff and Schwartz (2001), Ha and Bauer (2021)

Least Squares Regression

- linear regression on polynomials Longstaff and Schwartz (2001), Ha and Bauer (2021)
- regression trees Boudabsa and Filipović (2022)

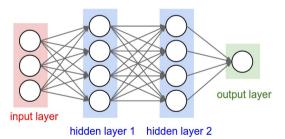
Least Squares Regression

- linear regression on polynomials Longstaff and Schwartz (2001), Ha and Bauer (2021)
- regression trees Boudabsa and Filipović (2022)
- neural network regression Kohlen et al (2010), Fiore et al. (2018), Cheridito et al. (2020)

Here, we minimize

$$\theta \mapsto \frac{1}{J} \sum_{j=1}^{J} (Y^{j} - f_{\theta}(X^{j}))^{2}$$

over a set of *neural networks* $f_{\theta} : \mathbb{R}^d \to \mathbb{R}, \ \theta \in \mathbb{R}^q$



• Let X^1, \ldots, X^n be independent \mathbb{P} -simulations of $X = (X_1, \ldots, X_d)$

- Let X^1, \ldots, X^n be independent \mathbb{P} -simulations of $X = (X_1, \ldots, X_d)$
- Denote by $X^{(1)}, \dots, X^{(n)}$ the reordered sample so that

$$L^{(1)} = f_{\theta}(X^{(1)}) \ge \ldots \ge L^{(n)} = f_{\theta}(X^{(n)})$$

- Let X^1, \ldots, X^n be independent \mathbb{P} -simulations of $X = (X_1, \ldots, X_d)$
- Denote by $X^{(1)}, \dots, X^{(n)}$ the *reordered sample* so that

$$L^{(1)} = f_{\theta}(X^{(1)}) \ge \ldots \ge L^{(n)} = f_{\theta}(X^{(n)})$$

• Apply VaR_{α} and ES_{α} to the *empirical measure*

$$\frac{1}{n}\sum_{i=1}^{n}\delta_{L^{(i)}}$$

- Let X^1, \ldots, X^n be independent \mathbb{P} -simulations of $X = (X_1, \ldots, X_d)$
- Denote by $X^{(1)}, \dots, X^{(n)}$ the reordered sample so that

$$L^{(1)} = f_{\theta}(X^{(1)}) \ge \ldots \ge L^{(n)} = f_{\theta}(X^{(n)})$$

• Apply VaR_{α} and ES_{α} to the empirical measure

$$\frac{1}{n}\sum_{i=1}^{n}\delta_{L^{(i)}}$$

$$\widehat{\operatorname{VaR}}_{\alpha}(n) = L^{(j)}$$
 an

where

$$j = \min \{i \in \{1, \dots, n\} : i/n > 1 - \alpha\}$$

- Let X^1, \ldots, X^n be independent \mathbb{P} -simulations of $X = (X_1, \ldots, X_d)$
- Denote by $X^{(1)}, \dots, X^{(n)}$ the reordered sample so that

$$L^{(1)} = f_{\theta}(X^{(1)}) \ge \ldots \ge L^{(n)} = f_{\theta}(X^{(n)})$$

• Apply VaR_{α} and ES_{α} to the empirical measure

$$\frac{1}{n}\sum_{i=1}^{n}\delta_{L^{(i)}}$$

$$\widehat{\operatorname{VaR}}_{\alpha}(n) = L^{(j)}$$
 and

$$ightharpoonup \widehat{\mathrm{VaR}}_{\alpha}(n) = L^{(j)} \quad \text{and} \quad \widehat{\mathrm{ES}}_{\alpha}(n) = \frac{1}{1-\alpha} \sum_{i=1}^{j-1} \frac{L^{(i)}}{n} + \left(1 - \frac{j-1}{(1-\alpha)n}\right) L^{(j)},$$

where

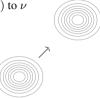
$$j = \min \{i \in \{1, \dots, n\} : i/n > 1 - \alpha\}$$

there exist convergence rates

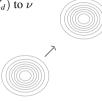
see. e.g., David and Nagaraja (2003) and Zwingmann and Holzmann (2016)

• Sample more frequently from the tail of L when estimating VaR_{α} and ES_{α}

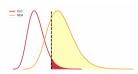
- Sample more frequently from the tail of L when estimating VaR_{α} and ES_{α}
- ullet by shifting the original distribution of $X=(X_1,\ldots,X_d)$ to u



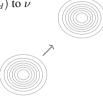
- Sample more frequently from the tail of L when estimating VaR_{α} and ES_{α}
- ullet by shifting the original distribution of $X=(X_1,\ldots,X_d)$ to u



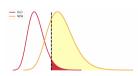
• so that L = f(X) has more weight in the tail



- Sample more frequently from the tail of L when estimating VaR_{α} and ES_{α}
- ullet by shifting the original distribution of $X=(X_1,\ldots,X_d)$ to u



• so that L = f(X) has more weight in the tail



 $\bullet \ \, \text{note that} \quad f = \arg\min_{\varphi \,:\, \mathbb{R}^d \to \mathbb{R}} \mathbb{E}^{\mathbb{P}^\nu \otimes \mathbb{Q}} \left[\left(Y - \varphi(X) \right)^2 \right]$

• stocks $dS_t^i = \mu_i S_t^i dt + \sigma_i S_t^i dW_t^{\mathbb{P},i} = r S_t^i dt + \sigma_i S_t^i dW_t^{\mathbb{Q},i}, \quad i = 1, \dots, 20,$

- stocks $dS_t^i = \mu_i S_t^i dt + \sigma_i S_t^i dW_t^{\mathbb{P},i} = rS_t^i dt + \sigma_i S_t^i dW_t^{\mathbb{Q},i}, \quad i = 1, \dots, 20,$
- call options $(S_T^i K)^+$, $i = 1, \dots 10$,

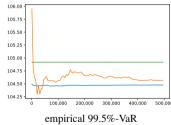
- stocks $dS_t^i = \mu_i S_t^i dt + \sigma_i S_t^i dW_t^{\mathbb{P},i} = rS_t^i dt + \sigma_i S_t^i dW_t^{\mathbb{Q},i}, \quad i = 1, \dots, 20,$
- call options $(S_T^i K)^+$, $i = 1, \dots 10$, put options $(K S_T^i)^+$, $i = 11, \dots 20$,

- stocks $dS^i_{\cdot} = \mu_i S^i_{\cdot} dt + \sigma_i S^i_{\cdot} dW^{\mathbb{P},i}_{\cdot} = rS^i_{\cdot} dt + \sigma_i S^i_{\cdot} dW^{\mathbb{Q},i}_{\cdot}$, $i = 1, \dots, 20$.
- call options $(S_T^i K)^+$, i = 1, ... 10, put options $(K S_T^i)^+$, i = 11, ... 20,
- can options $(S_T K)^{-1}$, l = 1, ... 10, put options $(K S_T)^{-1}$, l = 11, ... 20,
- time- τ loss $L = e^{-r(T-\tau)} \mathbb{E}^{\mathbb{Q}} \left[\sum_{i=1}^{10} (S_T^i K)^+ + \sum_{i=1}^{20} (K S_T^i)^+ \mid S_{\tau}^1, \dots, S_{\tau}^{20} \right]$

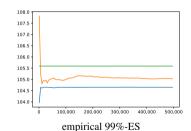
• stocks
$$dS_t^i = \mu_i S_t^i dt + \sigma_i S_t^i dW_t^{\mathbb{P},i} = r S_t^i dt + \sigma_i S_t^i dW_t^{\mathbb{Q},i}, \quad i = 1, \dots, 20,$$

• call options
$$(S_T^i - K)^+$$
, $i = 1, \dots 10$, put options $(K - S_T^i)^+$, $i = 11, \dots 20$,

• time-
$$\tau$$
 loss $L = e^{-r(T-\tau)} \mathbb{E}^{\mathbb{Q}} \left[\sum_{i=1}^{10} (S_T^i - K)^+ + \sum_{i=11}^{20} (K - S_T^i)^+ \mid S_{\tau}^1, \dots, S_{\tau}^{20} \right]$



without IS



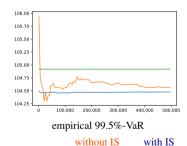
with IS

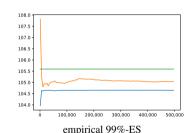
reference values obtained from Black-Scholes

• stocks
$$dS_t^i = \mu_i S_t^i dt + \sigma_i S_t^i dW_t^{\mathbb{P},i} = rS_t^i dt + \sigma_i S_t^i dW_t^{\mathbb{Q},i}, \quad i = 1, \dots, 20,$$

• call options
$$(S_T^i - K)^+$$
, $i = 1, \dots 10$, put options $(K - S_T^i)^+$, $i = 11, \dots 20$,

• time-
$$\tau$$
 loss $L = e^{-r(T-\tau)} \mathbb{E}^{\mathbb{Q}} \left[\sum_{i=1}^{10} (S_T^i - K)^+ + \sum_{i=11}^{20} (K - S_T^i)^+ \mid S_{\tau}^1, \dots, S_{\tau}^{20} \right]$





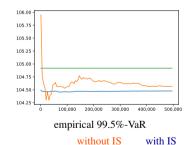
reference values obtained from Black-Scholes

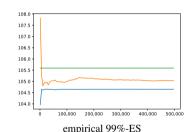
Approximation Error I: $L = f(X) \approx \hat{L} = f_{\theta}(X)$

• stocks
$$dS_t^i = \mu_i S_t^i dt + \sigma_i S_t^i dW_t^{\mathbb{P},i} = rS_t^i dt + \sigma_i S_t^i dW_t^{\mathbb{Q},i}, \quad i = 1, \dots, 20,$$

• call options
$$(S_T^i - K)^+$$
, $i = 1, \dots 10$, put options $(K - S_T^i)^+$, $i = 11, \dots 20$,

• time-
$$\tau$$
 loss $L = e^{-r(T-\tau)} \mathbb{E}^{\mathbb{Q}} \left[\sum_{i=1}^{10} (S_T^i - K)^+ + \sum_{i=11}^{20} (K - S_T^i)^+ \mid S_{\tau}^1, \dots, S_{\tau}^{20} \right]$





reference values obtained from Black-Scholes

Approximation Error I: $L = f(X) \approx \hat{L} = f_{\theta}(X)$

Approximation Error II:
$$ES_{\alpha}(\hat{L}) \approx \widehat{ES}_{\alpha}(\hat{L})$$

Example 2: Variable Annuity with GMIB (Guaranteed Minimum Income Benefit)

Example 2: Variable Annuity with GMIB (Guaranteed Minimum Income Benefit) (Ha and Bauer, 2021)

value of the annuity at time $T : \max \{S_T = e^{q_T}, b a_{x+T}(T)\}$

(Ha and Bauer, 2021)

value of the annuity at time $T : \max \{S_T = e^{q_T}, b a_{x+T}(T)\}$

$$L = \mathbb{E}^{\mathbb{Q}} \left[e^{-\int_{\tau}^{T} r_{s} + \mu_{x+s} ds} \max \left\{ e^{q_{T}}, b \, a_{x+T}(T) \right\} \mid q_{\tau}, \, r_{\tau}, \, \mu_{x+\tau} \right]$$

where $a_{x+T}(T) = \text{time-}T$ value of a life-time annuity and

 $q_{\tau} = \text{log-stock index}, \ r_{\tau} = \text{interest rate}, \ \mu_{x+\tau} = \text{mortality rate}$

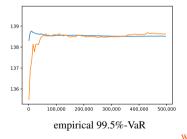
(Ha and Bauer, 2021)

value of the annuity at time $T : \max \{S_T = e^{q_T}, b a_{x+T}(T)\}$

$$L = \mathbb{E}^{\mathbb{Q}} \left[e^{-\int_{\tau}^{T} r_{s} + \mu_{x+s} ds} \max \left\{ e^{q_{T}}, b \, a_{x+T}(T) \right\} \mid q_{\tau}, \, r_{\tau}, \, \mu_{x+\tau} \right]$$

where $a_{x+T}(T) = \text{time-}T$ value of a life-time annuity and

 $q_{ au} = ext{log-stock index}, \; r_{ au} = ext{ interest rate}, \; \mu_{x+ au} = ext{ mortality rate}$



142 141 140-139-138-137-0 100,000 200,000 300,000 400,000 500,000 empirical 99%-ES

without IS with IS

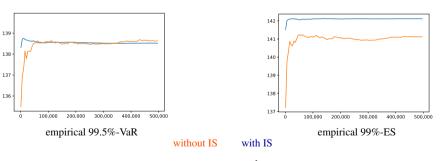
(Ha and Bauer, 2021)

value of the annuity at time
$$T : \max \{S_T = e^{q_T}, b a_{x+T}(T)\}$$

$$L = \mathbb{E}^{\mathbb{Q}} \left[e^{-\int_{\tau}^{T} r_s + \mu_{x+s} ds} \max \left\{ e^{q_T}, b \, a_{x+T}(T) \right\} \mid \, q_{\tau}, \, r_{\tau}, \, \mu_{x+\tau} \right]$$

where $a_{x+T}(T) = \text{time-}T$ value of a life-time annuity and

 $q_{ au} = ext{log-stock index}, \; r_{ au} = ext{ interest rate}, \; \mu_{x+ au} = ext{ mortality rate}$



Approximation Error I: $L = f(X) \approx \hat{L} = f_{\theta}(X)$ black box!

(Ha and Bauer, 2021)

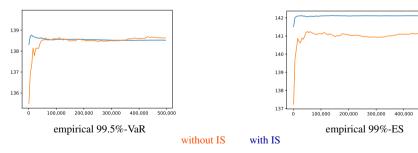
value of the annuity at time $T : \max \{S_T = e^{q_T}, b a_{x+T}(T)\}$

$$L = \mathbb{E}^{\mathbb{Q}}\left[e^{-\int_{\tau}^{T} r_{s} + \mu_{x+s} ds} \max\left\{e^{q_{T}}, b \, a_{x+T}(T)\right\} \mid q_{\tau}, \, r_{\tau}, \, \mu_{x+\tau}\right]$$

where $a_{x+T}(T) = \text{time-}T$ value of a life-time annuity and

 $q_{ au} = ext{log-stock index}, \; r_{ au} = ext{interest rate}, \; \mu_{\textbf{x}+ au} = ext{mortality rate}$

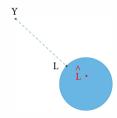
500,000



Approximation Error I: $L = f(X) \approx \hat{L} = f_{\theta}(X)$ black box!

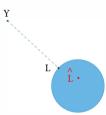
Approximation Error II: $ES_{\alpha}(\hat{L}) \approx \widehat{ES}_{\alpha}(\hat{L})$ well understood

Goal Derive an alternative representation of the minimal L^2 -distance



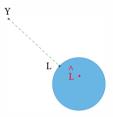
Goal Derive an alternative representation of the minimal L^2 -distance

$$\min_{f: \mathbb{R}^d \to \mathbb{R}} ||Y - f(X)||_2 = ||Y - \mathbb{E}[Y \mid X]||_2$$



Goal Derive an alternative representation of the minimal L^2 -distance

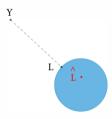
$$\min_{f: \mathbb{R}^d \to \mathbb{R}} ||Y - f(X)||_2 = ||Y - \mathbb{E}[Y \mid X]||_2$$



Assumption Y is of the form Y = h(X, V) for a known function $h: \mathbb{R}^{d+k} \to \mathbb{R}$ and a k-dim random vector V independent of X

Goal Derive an alternative representation of the minimal L^2 -distance

$$\min_{f: \mathbb{R}^d \to \mathbb{R}} ||Y - f(X)||_2 = ||Y - \mathbb{E}[Y \mid X]||_2$$

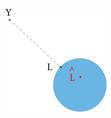


Assumption Y is of the form Y = h(X, V) for a known function $h: \mathbb{R}^{d+k} \to \mathbb{R}$ and a k-dim random vector V independent of X

Define $Z = h(X, \tilde{V})$ for an independent copy \tilde{V} of V

Goal Derive an alternative representation of the minimal L^2 -distance

$$\min_{f : \mathbb{R}^d \to \mathbb{R}} ||Y - f(X)||_2 = ||Y - \mathbb{E}[Y \mid X]||_2$$



Assumption Y is of the form Y = h(X, V) for a known function $h: \mathbb{R}^{d+k} \to \mathbb{R}$ and a k-dim random vector V independent of X

Define $Z = h(X, \tilde{V})$ for an independent copy \tilde{V} of V

Theorem
$$||Y - \mathbb{E}[Y \mid X]||_{2}^{2} = \mathbb{E}[Y(Y - Z)]$$

$$\left\| Y - \hat{f}(X) \right\|_{L^{2}(\mathbb{P})}^{2} \ge \| Y - \mathbb{E}[Y \mid X] \|_{L^{2}(\mathbb{P})}^{2} = \mathbb{E}[Y(Y - Z)]$$

$$\|Y - \hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} \ge \|Y - \mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2} = \mathbb{E}[Y(Y - Z)]$$

By Pythagoras

• By Pythagoras
$$\|Y - \mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2} + \|\mathbb{E}[Y \mid X] - \hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} = \|Y - \hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}$$

$$\|Y - \hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} \ge \|Y - \mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2} = \mathbb{E}[Y(Y - Z)]$$

$$||L^2(\mathbb{P})||$$

• By Pythagoras
$$\|Y - \mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2} + \|\mathbb{E}[Y \mid X] - \hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} = \|Y - \hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}$$

• Therefore
$$\left\| \mathbb{E}[Y \mid X] - \hat{f}(X) \right\|_{L^{2}(\mathbb{P})}^{2} = \left\| Y - \hat{f}(X) \right\|_{L^{2}(\mathbb{P})}^{2} - \mathbb{E}[Y(Y - Z)]$$

$$||Y - \hat{f}(X)||_{L^{2}(\mathbb{P})}^{2} \ge ||Y - \mathbb{E}[Y \mid X]||_{L^{2}(\mathbb{P})}^{2} = \mathbb{E}[Y(Y - Z)]$$

$$\| \mathcal{L}^2(\mathbb{P}) - \mathcal{L}^2(\mathbb{P}) \|$$

• By Pythagoras
$$\|Y - \mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2} + \|\mathbb{E}[Y \mid X] - \hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} = \|Y - \hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}$$

• Therefore
$$\left\| \mathbb{E}[Y \mid X] - \hat{f}(X) \right\|_{L^{2}(\mathbb{P})}^{2} = \left\| Y - \hat{f}(X) \right\|_{L^{2}(\mathbb{P})}^{2} - \mathbb{E}[Y(Y - Z)]$$

$$\uparrow \qquad \qquad \qquad \searrow$$

$$L^{2}$$
-approximation error can be estimated

$$||Y - \hat{f}(X)||_{L^{2}(\mathbb{P})}^{2} \geq ||Y - \mathbb{E}[Y \mid X]||_{L^{2}(\mathbb{P})}^{2} = \mathbb{E}[Y(Y - Z)]$$

• By Pythagoras
$$\|Y - \mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2} + \|\mathbb{E}[Y \mid X] - \hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} = \|Y - \hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}$$

• Therefore
$$\left\| \mathbb{E}[Y \mid X] - \hat{f}(X) \right\|_{L^{2}(\mathbb{P})}^{2} = \left\| Y - \hat{f}(X) \right\|_{L^{2}(\mathbb{P})}^{2} - \mathbb{E}[Y(Y - Z)]$$

$$\uparrow \qquad \qquad \swarrow \qquad \nearrow$$

$$L^{2}$$
-approximation error can be estimated

•
$$ES_{\alpha}$$
 is L^2 - Lipschitz-continuous: $\left|ES_{\alpha}(f(X)) - ES_{\alpha}(\hat{f}(X))\right| \leq \frac{1}{1-\alpha} \|f(X) - \hat{f}(X)\|_{L^2(\mathbb{P})}$

$$||Y - \hat{f}(X)||_{L^{2}(\mathbb{P})}^{2} \geq ||Y - \mathbb{E}[Y \mid X]||_{L^{2}(\mathbb{P})}^{2} = \mathbb{E}[Y(Y - Z)]$$

• By Pythagoras
$$\|Y - \mathbb{E}[Y \mid X]\|_{L^{2}(\mathbb{P})}^{2} + \|\mathbb{E}[Y \mid X] - \hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2} = \|Y - \hat{f}(X)\|_{L^{2}(\mathbb{P})}^{2}$$

• Therefore
$$\left\| \mathbb{E}[Y \mid X] - \hat{f}(X) \right\|_{L^{2}(\mathbb{P})}^{2} = \left\| Y - \hat{f}(X) \right\|_{L^{2}(\mathbb{P})}^{2} - \mathbb{E}[Y(Y - Z)]$$

$$\uparrow \qquad \qquad \swarrow \qquad \swarrow$$

$$L^{2}\text{-approximation error} \qquad can be estimated$$

•
$$\mathrm{ES}_{\alpha}$$
 is L^2 - Lipschitz-continuous: $\left|\mathrm{ES}_{\alpha}(f(X)) - \mathrm{ES}_{\alpha}(\hat{f}(X))\right| \leq \frac{1}{1-\alpha} \|f(X) - \hat{f}(X)\|_{L^2(\mathbb{P})}$

• Problem: for
$$\alpha = 0.99$$
, $\frac{1}{1 - \alpha} = 100$

• Numerical approximation
$$L = f(X) \approx \hat{L} = \hat{f}(X)$$

• Numerical approximation
$$L = f(X) \approx \hat{L} = \hat{f}(X)$$

• Denote
$$\mathbb{P}_{\alpha} = \frac{1}{1-\alpha} \mathbb{1}_{\{L \geq \operatorname{Var}_{\alpha}(L)\}} \cdot \mathbb{P}, \qquad \hat{\mathbb{P}}_{\alpha} = \frac{1}{1-\alpha} \mathbb{1}_{\{\hat{L} \geq \operatorname{Var}_{\alpha}(\hat{L})\}} \cdot \mathbb{P}$$

• Numerical approximation
$$L = f(X) \approx \hat{L} = \hat{f}(X)$$

• Denote
$$\mathbb{P}_{\alpha} = \frac{1}{1-\alpha} \mathbb{1}_{\{L \geq \operatorname{Var}_{\alpha}(L)\}} \cdot \mathbb{P}, \qquad \hat{\mathbb{P}}_{\alpha} = \frac{1}{1-\alpha} \mathbb{1}_{\{\hat{L} \geq \operatorname{Var}_{\alpha}(\hat{L})\}} \cdot \mathbb{P}$$

Theorem
$$\left| \mathrm{ES}_{\alpha}(L) - \mathrm{ES}_{\alpha}(\hat{L}) \right| \leq \left\| L - \hat{L} \right\|_{L^{2}(\mathbb{P}_{\alpha})} \vee \left\| L - \hat{L} \right\|_{L^{2}(\hat{\mathbb{P}}_{\alpha})}$$

• Numerical approximation
$$L = f(X) \approx \hat{L} = \hat{f}(X)$$

• Denote
$$\mathbb{P}_{\alpha} = \frac{1}{1-\alpha} \mathbb{1}_{\{L \geq \operatorname{Var}_{\alpha}(L)\}} \cdot \mathbb{P}, \qquad \hat{\mathbb{P}}_{\alpha} = \frac{1}{1-\alpha} \mathbb{1}_{\{\hat{L} \geq \operatorname{Var}_{\alpha}(\hat{L})\}} \cdot \mathbb{P}$$

• Numerical approximation
$$L = f(X) \approx \hat{L} = \hat{f}(X)$$

• Denote
$$\mathbb{P}_{\alpha} = \frac{1}{1-\alpha} \mathbb{1}_{\{L \geq \operatorname{Var}_{\alpha}(L)\}} \cdot \mathbb{P}, \qquad \hat{\mathbb{P}}_{\alpha} = \frac{1}{1-\alpha} \mathbb{1}_{\{\hat{L} \geq \operatorname{Var}_{\alpha}(\hat{L})\}} \cdot \mathbb{P}$$

$$\begin{array}{ll} \textbf{Theorem} & \left| \mathrm{ES}_{\alpha}(L) - \mathrm{ES}_{\alpha}(\hat{L}) \right| \leq \left\| L - \hat{L} \right\|_{L^{2}(\mathbb{P}_{\alpha})} \vee \left\| L - \hat{L} \right\|_{L^{2}(\hat{\mathbb{P}}_{\alpha})} \\ & \uparrow \\ & \text{can be estimated} \end{array}$$

• We assume
$$\|L - \hat{L}\|_{L^2(\mathbb{P}_\alpha)} \approx \|L - \hat{L}\|_{L^2(\hat{\mathbb{P}}_\alpha)}$$

Numerical Results

	$\widehat{\mathrm{ES}}_{lpha}(\hat{L})$	error	relative error
Option Portfolio	104.6	± 1.5	± 1.4 %
Variable Annuity	142.0	± 1.7	\pm 1.2 %

