Ki Insurance - Property Binder
Portfolio Optimisation

Abstract

The Lloyd’s of London specialty insurance market is ripe for disruption. Global risk landscapes are
changing at an unprecedented pace, and insurers must surely embrace algorithmic approaches to remain

competitive.

We present a novel application of modern portfolio theory within the context of specialty insurance. We
first construct a deterministic loss simulation for our existing property binder portfolio, utilising the
output of external catastrophe and in-house attritional loss models. The high-dimensionality of the
portfolio and complex non-linear relationships captured within the simulation introduce a constraint-
optimisation problem which is hard to solve using traditional methods. Hence, we reach for the class of
biology-inspired stochastic optimisation techniques and implement genetic algorithms [1, 2] to optimise
our portfolio for metrics including expected return and volatility. To the best of our knowledge, there has
been no previous application of evolutionary algorithms for portfolio management within the insurance
industry.
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Context

* Kilnsurance is the first fully digital and algorithmically driven syndicate operating within the Lloyd"s
of London market.

« Aproportion of our book consists of United States property binders, primarily covered for hurricane
and earthquake perils, and Ki is uniquely posititioned in the market to deploy flexible line sizes.

* We model this portfolio using catastrophe and attritional loss models over 10,000 years of events,

capturing correlations between policies where they overlap geographically.
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Disclaimer: all data in this presentation has been randomised to maintain confidentiality.



Simulation

1. Letus construct a deterministic loss model for the property binders portfolio as follows:

Superfluous Mathematical Description... o)

Let BB be the set of all binder policies in the portfolio simulated over the set of all years ).
For policy b € B, let [ and p;, be the line size allocation and total premium respectively.
For policyb € Binyeary € Y, let Cp,y be the sum of the total catastrophe and attitional claims.
Denote 75,y to be the return for policy b € Binyeary € Y, hence,
Ty = (D6 — Coy)-
Therefore, the portfolio returninyeary € Y is,
'I'y = Ebeg’rb’y.

The portfolio mean return p is given by,

;7]

The portfolio volatility o is given by,

— Zyey(ry—p)?
o=/ =25

The portfolio Sharpe ratio ¢ is given by,
$==.
The portfolio TVaR metric, for given percentile p, 7;, is given by,

= D)
P PIa-p)’
foryearsy € ) such that the returns Ty are in the lowest (1 = p) percentile.

The portfolio total premium p is given by,
P = bcBPo-
The portfolio mean loss ratio @ is given by,

9=1-

® &

2. We proceed to introduce constraints on the portfolio space, such that each binder policy can be
signed between a minimum and maximum line size allocation determined by an underwriter.

3. Letus now perform a Monte Carlo simulation, generating portfolios by uniformly sampling line sizes
between the policy constraints and evaluating each portfolio for metrics using the deterministic loss
model.



Simulation
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Simulation
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Simulation

Input Number of Policies: Input Number of Random Portfolios:

1 100 © 200

Monte Carlo Portfolio Line Sizes

0.5

Portfolio
Current
0.4 Minimum
®  Maximum
* 0
g 0.3 e ]
7] ¢ 2
2 * 3
i 0.2
e 4
L
0.1 * 6
7
8
2 9
bl b2
Policy
Monte Carlo Simulation Results
5M ~ Portfolio
Current
s Minimum
4™ % o
. ®  Maximum
a $ o * 0
w L)
2 M 8 * e 1
= ; d *
5 . 2
@ ® o . 3
® oM e
= * 4
g O
= . * 5
™M T * 6
«® % 7
o
8
0 e 9
0 M 2M 3M aMm 5M

Volatility (USD)



Simulation
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Portfolio Optimisation

Fitness Function

Let us phrase our portfolio simulation and constraints in the context of an optimisation problem.

Consider six objective functions u, &, @, T, p, and 8 optimising mean return, volatility, sharpe ratio,

TVaR95, premium, and mean loss ratio respectively.

Define our fitness function F(Q), for some weight vector w, to be some linear combination of the

objective functions which we seek to maximize. Hence,

F(w) = wip + w20 + w3 + waT + wsp + web,



Portfolio Optimisation

Genetic Algorithms

Given the high-dimensionality of the constraints and the non-linear nature of the simulation, we decide to

use stochastic optimisation methods to optimise our portfolio.

Furthermore, we opt for a population based approach as seek to find a diverse set of "optimal" portfolios
to provide our underwriters with multiple strategies.

Thus, we implement genetic algorithms as per the pseudocode below:

def genetic_algorithm(verbose=True):
# Initialise population

population = initialise_population()

# Iterate over generations

for generation in range(n_generations):
# Simulate population
metrics = simulate(population)

# Evaluate fitness distribution
distribution = fitness_function(metrics)

# Select fittest individuals
elite_population = selection(population, distribution)

# Create offspring
succession_population = crossover(population, distribution)
succession_population = mutation(succession_population)

# Construct next generation population

population = elite_population + succession_population

verbose:
print("fin.")
~eturn population



Portfolio Optimisation

Demonstration

We propose the following scenario and algorithm parametrisation:

Example Setup. A

The portfolio simulation consists of 100 binder policies with arbitrary line size constraints.
The population is initialised with 1,000 random portfolios and iterated over 200 generations.

The fitness function is defined to maximise Sharpe ratio and minimise distance to a target
$200m premium.

The genetic algorithm is parametrised such that each new generation of portfolios is constructed
using a 20% elitism rate and an 80% succession rate.

The succession offspring are generated by drawing pairs of parent portfolios from the softmax
population fitness distribution, from which the line sizes are swapped following a 5% crossover
rate and randomised at a 2% mutation rate.



Portfolio Optimisation

Training Visualisation

Generation Simulation Results
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Using Uber's H3 geospatial indexing system, we aggregate portfolio exposure into hexagons and are able

to plot the population average exposure optimising across the United States.

Note, we normalise the exposure of each hexagon independently for visual interpretability.
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Portfolio Optimisation

Training Visualisation

Generation Simulation Results
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to plot the population average exposure optimising across the United States.

Note, we normalise the exposure of each hexagon independently for visual interpretability.
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Portfolio Optimisation

Training Visualisation

Generation Simulation Results
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to plot the population average exposure optimising across the United States.

Note, we normalise the exposure of each hexagon independently for visual interpretability.
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Portfolio Optimisation

Training Visualisation

Generation Simulation Results
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Using Uber's H3 geospatial indexing system, we aggregate portfolio exposure into hexagons and are able
to plot the population average exposure optimising across the United States.

Note, we normalise the exposure of each hexagon independently for visual interpretability.
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Portfolio Optimisation

Training Visualisation

Generation Simulation Results
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Using Uber's H3 geospatial indexing system, we aggregate portfolio exposure into hexagons and are able
to plot the population average exposure optimising across the United States.

Note, we normalise the exposure of each hexagon independently for visual interpretability.
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Portfolio Optimisation

Optimal Results

The genetic algorithm outputs a large number of potential solutions that may be challenging to interpret.

Hence, we begin to reduce the pool of portfolios by selecting those along the efficient frontier, offering the
best mean return to volatility tradeoff.

We continue to filter the portfolios to determine our "optimal" portfolios with a premium within $5m from
the target premium and a volatility less than $25m.

Genetic Algorithm Simulation Results

*  Current
120M
Premium (USD)

—  100M
=)
@
= 200M
£  8M
2 .
& 150M
< 60M
3 »
=

40M

15M 20M 25M 30M 35M 40M

Volatility (USD)
BB Portfolios=All
All

Efficient Optimal



Portfolio Optimisation

Optimal Results

The genetic algorithm outputs a large number of potential solutions that may be challenging to interpret.

Hence, we begin to reduce the pool of portfolios by selecting those along the efficient frontier, offering the
best mean return to volatility tradeoff.

We continue to filter the portfolios to determine our "optimal" portfolios with a premium within $5m from
the target premium and a volatility less than $25m.
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Portfolio Optimisation

Optimal Results

The genetic algorithm outputs a large number of potential solutions that may be challenging to interpret.

Hence, we begin to reduce the pool of portfolios by selecting those along the efficient frontier, offering the
best mean return to volatility tradeoff.

We continue to filter the portfolios to determine our "optimal" portfolios with a premium within $5m from
the target premium and a volatility less than $25m.
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Portfolio Optimisation

Clustering Analysis

In order to further simplify these "optimal" portfolios, we now perform hierarchical clustering in the
portfolio space to yield distinct groups of portfolio compositions with desireable performance metrics.

These clusters allow underwriters flexibility when choosing a strategy, before they then consider factors
that are not captured as part of the simulation- for example, applying a commercial lens for line size
viability, hotspot monitoring, and historic performance.
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Portfolio Optimisation

Clustering Analysis

In order to further simplify these "optimal" portfolios, we now perform hierarchical clustering in the

portfolio space to yield distinct groups of portfolio compositions with desireable performance metrics.

These clusters allow underwriters flexibility when choosing a strategy, before they then consider factors

that are not captured as part of the simulation- for example, applying a commercial lens for line size

viability, hotspot monitoring, and historic performance.

Clustered Optimal Portfolio Line Sizes

0.5

[

03

0.2

Maximum Line

0.1

Clustered Optimal Portfolio Simulation Results

110M

105M

100M

95M

Mean Return (USD)

90M

85M

]

Cluster=2

» Volatility (USD)=24.53142M
/ Mean Return (USD)=108.3758M

Sharpe Ratio=4.4178352333600515

Volatility (USD): 41644129.477342725
Mean Return (USD): 83540480.17998224

Sharpe Ratio: 2.00605658536899

¢ Premium (USD)=200945025.29768354
[ 4 Generation=196
»
-
&
Cluster=1

Volatility (USD)=18.41962M

Mean Return (USD)=89.73722M
Sharpe Ratio=4.871829074058035
Premium (USD)=198883579.79302993
Generation=149

20M 25M 30M
Volatility (USD)

TVaR (USD): -26865046.464063052
Premium (USD): 141556941.93477425
Mean Loss Ratio: 0.40984540187032636

Portfolio: Current

35M

40M

Cluster
.

B W N e

*  Current

Cluster
.

L

*  Current



Insurance Data Science Conference 2024.
Adam Bedwell-Smith, adam.bedwell-smith@ki-insurance.com.

Finlay Duff, finlay.duff@ki-insurance.com.



