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� Problem statement

Consider a random variable

𝑌|𝑥 ∼ 𝐹(𝜇(𝑥))

where 𝐹 is a member of the exponential dispersion family. The
mean function

𝔼[𝑌|𝑥] = 𝜇(𝑥)

for feature vector 𝑥 ∈ 𝒳 is unknown. Let ℒ(𝜇(𝑥𝑖), 𝑦𝑖) denote the
negative log-likelihood of the model for a given observation
(𝑥𝑖, 𝑦𝑖).
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� Example

Assume 𝑌 ∼ Poisson(𝜇(𝑥1, 𝑥2, 𝑧)), represents the total number
of claims for a car insurance policyholder, and that

� 𝑥1 is the policyholder’s age,
� 𝑥2 is the policyholder’s current bonus level,
� 𝑧 is the name of the region where the policyholder lives.

Then, 𝜇(𝑥1, 𝑥2, 𝑧) could represent the expected claim amount
for a policyholder in region 𝑧 of age 𝑥1 and with bonus level 𝑥2.
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� Generalized Linear Models

A model that can be used for a problem like this is the
Generalized Linear Model (GLM) as

𝑔 (𝜇(𝑥)) = 𝛽0 +
𝑝
∑
𝑗=1

𝛽𝑗𝑥𝑗

where 𝑔 is a link function, and 𝛽0, 𝛽1,… , 𝛽𝑝 are model
parameters, all in ℝ.
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� Generalized Linear Models

Since ℒ(𝜇𝑖, 𝑦𝑖) is convex in 𝜇𝑖, the loss for a set of parameters,

ℒ(𝛽; 𝑦) =
𝑛
∑
𝑖=1

ℒ(𝜇(𝑥𝑖), 𝑦𝑖; 𝛽)

is also convex in 𝛽, where 𝛽 = (𝛽0, 𝛽1,… , 𝛽𝑝), meaning that the
GLM can be fit as

𝛽̂ = arg min
𝛽∈ℝ𝑝+1

ℒ(𝛽; 𝑦).
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� Generalized Linear Models

This yields a flexible and easy-to-interpret model, where
predictions on out-of-sample data point 𝑥 can be made as

𝜇(𝑥) = 𝑔−1 ( ̂𝛽0 +
𝑝
∑
𝑗=1

̂𝛽𝑗𝑥𝑗) .
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� Example

In the example, a GLM with parameters 𝛽0, 𝛽1, 𝛽2 could be
interpreted as

� exp(𝛽0) is the expected claim amount for a policyholder at
age 0 and bonus level 0

� exp(𝛽1) is the expected increase factor in claim amount
for a one-year increase in age

� exp(𝛽2) is the expected increase factor in claim amount
for a one-unit increase in bonus level

However, the effect of age and bonus level can only be
modeled linearly, and the categorical variable 𝑧 cannot be
included in the model without further feature engineering.
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� Gradient Boosting Machines

An alternative is to use a machine learning model, such as a
Gradient Boosting Machine (GBM) (Friedman 2001), which
assumes the more flexible form

𝑔 (𝜇(𝑥)) = 𝑏(𝑥; 𝜓) =
𝐾
∑
𝑘=1

𝑓(𝑥; 𝜈𝑘)

where 𝑓 is a regression tree parameterized by 𝜈𝑘, and 𝐾 is the
number of trees in the model. 𝜓 is the set of all parameters in
the model.
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� Gradient Boosting Machines

The GBM is fit by iteratively fitting trees to the negative
gradient of the loss function, i.e.

𝑑𝑖 = − 𝜕
𝜕𝑢ℒ(𝜇(𝑢), 𝑦𝑖)

|||ᵆ=𝑏(𝑥𝑖; ̂𝜓(−1))

̂𝜈𝑘 = arg min
𝜈𝑘

𝑛
∑
𝑖=1

(𝑓(𝑥𝑖; 𝜈𝑘) − 𝑑𝑖)
2

where 𝑏(𝑥; ̂𝜓(−1)) is the current model.
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� Gradient Boosting Machines

The GBM functional form is very flexible, and can model
complex relationships between input variables and the
response.

However, it is less interpretable than a GLM, as the model
parameters are not directly interpretable.
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� Example

Say that the effect of age is significant in years 20 − 30, but not
after that. A GBM could capture this relationship, whereas a
GLM could not.

Also, a GBM can model the effect of the categorical variable 𝑧
without further feature engineering, given a tree structure that
can split on the categorical variable.

However, the nice interpretation of the GLM is lost, since the
model parameters are not directly interpretable.
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� Varying Coefficient Models

A Varying Coefficient Model (VCM) (Hastie and Tibshirani 1993),
allows the model parameters to vary with the input variables,
i.e.

𝑔 (𝜇(𝑥)) = 𝛽0(𝑧) +
𝑝
∑
𝑗=1

𝛽𝑗(𝑧)𝑥𝑗

where 𝛽0(𝑧), 𝛽1(𝑧),… , 𝛽𝑝(𝑧) are model parameter functions of
modifier features 𝑧.
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� Varying Coefficient Models

This gives the model plenty of flexibility over a standard GLM,
since the model parameter functions can be fit using any
regression method. It also retains some local interpretability.
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� Example

For an individual in region 𝑧, the VCM parameter function
values can be interpreted as

� exp(𝛽0(𝑧)) is the average claim amount for a policyholder
in region 𝑧

� exp(𝛽1(𝑧)) is the expected increase factor in claim amount
for a one-year increase in age for a policyholder in region
𝑧

� exp(𝛽2(𝑧)) is the expected increase factor in claim amount
for a one-unit increase in bonus level for a policyholder in
region 𝑧

However, potential non-linear relationships between age and
claim amount would not be captured by this model.
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� Example

If one however adds 𝑥1 as an input to the parameter functions,
i.e.,

𝑔 (𝜇(𝑥)) = 𝛽0 +
𝑝
∑
𝑗=1

𝛽𝑗(𝑧, 𝑥1, 𝑥2)𝑥𝑗

the model can capture non-linear relationships between age
and claim amount. Note though, that the interpretability of 𝛽1
is no longer as clear, as we can no longer guarantee that the
the value of 𝛽1 is constant when 𝑥1 changes.
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� Examples of VCMs

One example of a VCM is the LocalGLMNet model (Richman
and Wüthrich 2023), which uses a neural network with a skip
connection to model the parameter functions. It assumes that
the feature sets 𝑥 and 𝑧 are equal, making the model very
flexible.

Another example of a VCM can be found in Decision tree
bossted VCMs (Zhou and Hooker 2022), where the model
parameters functions are modeled using regression trees.
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� Tree-based VCM

In this work, we propose a tree-based VCM, with the following
model architecture:

𝑔 (𝜇(𝑥, 𝑧)) = 𝑎(𝑥, 𝑧; 𝜃) = 𝛽0 +
𝑝
∑
𝑗=1

𝛽𝑗(𝑧𝑗; 𝜓𝑗)𝑥𝑗

where

𝛽𝑗(𝑧𝑗; 𝜓𝑗) =
𝐾𝑗
∑
𝑘=1

𝑓(𝑧𝑗; 𝜈𝑗𝑘)

for 𝑗 = 1,… , 𝑝, where 𝑓 is a regression tree with parameters 𝜈𝑗𝑘,
and 𝐾𝑗 is the number of trees for parameter function 𝛽𝑗. Here,
𝑧𝑗 represents a set of modifier features for input variable 𝑥𝑗.

16



� Tree-based VCM

The model is fit by iteratively fitting trees to the negative
gradient of the loss function in a cyclic manner, i.e.

𝑑𝑖𝑗 = −𝑥𝑖𝑗
𝜕
𝜕𝜇ℒ(𝜇, 𝑦𝑖)

|||𝜇=𝜇(ᵆ𝑖)
⋅
𝜕𝑔−1(𝑢)
𝜕𝑢

|||ᵆ=𝑎(𝑥𝑖; ̂𝜃(−1))

̂𝜈𝑗𝑘 = arg min
𝜈𝑗𝑘

𝑛
∑
𝑖=1

(𝑓𝑗(𝑧𝑖𝑗; 𝜈𝑗𝑘) − 𝑑𝑖𝑗)
2

where 𝑎(𝑥; ̂𝜃(−1)) is the current model.
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� Tree-based VCM

Some advantages of this tree-based VCM include:

� For disjoint feature sets 𝑧 and 𝑥, the model is highly
interpretable locally.

� Using parameter-wise early stopping (see On cyclic
gradient boosting by Delong et al. 2023), different
parameter function complexity is allowed, allowing for e.g.
fully linear relationships for some input variables.

| Using parameter-wise feature importance scores, the
relationship between modifiers 𝑧 and input variables 𝑥
can be mapped more clearly, allowing the models to be
tuned to smaller feature sets.
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� Synthetic example

Consider the following model from Richman and Wüthrich
2023:

Let 𝑌|𝑥 ∼ 𝒩(𝜇(𝑥), 1) have mean function

𝜇(𝑥) = 1
2𝑥1 −

1
4𝑥

2
2 +

1
2|𝑥3| sin(2𝑥3) +

1
2𝑥4𝑥5 +

1
8𝑥

2
5𝑥6

where 𝑥 are drawn from a Normal distribution with mean 0
and variance 1.

Features 𝑥2 and 𝑥8 have a correlation of 0.5. Note that 𝑥7 and
𝑥8 are not used in the model.
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� Synthetic example

The VCM model captures the structure far better than a GLM...
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Figure 1: GLM vs VCM predictions
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� Synthetic example

...while maintaining some of the local interpretability
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Figure 2: GLM vs VCM coefficient predictions
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� Real data example

Also, like in Richman and Wüthrich 2023, the model is tested
on real life insurance data.

The freMTPL2freq dataset contains 678, 013 observations of
the number of claims for French car insurance policies as well
as various features.

Model Train Test
� GLM 24.18 24.22
� GBM 23.85 23.89
� Tree-based VCM 23.75 23.84
� LocalGLMNet 23.73 23.95

Table 1: Poisson deviance for the models
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� Real data example

The feature importance scores for the parameter functions
allows for further analysis and feature selection.
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Figure 3: Feature importance scores for the parameter functions 23



� Thank you for your attention!

Interested? Check out

� Preprint at arxiv.org/pdf/2401.05982
� Code at github.com/henningzakrisson/local-glm-boost
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