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Motivation
Improve existing literature by introducing general framework for large set of features.

An individual model for reserving utilizing the theory in Hiabu ( ) and Pittarello,
Hiabu, and Villegas ( ).

Expanding the toolbox for reserving actuaries.

Maintain interpretability through development factors.
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Result

Feature dependent development factors on monthly and quarterly granularity.



Modelling
We model claim reportings and build upon the theory in Hiabu ( ) and Pittarello, Hiabu,
and Villegas ( ) using survival models for the time-to-event analysis of left-truncated and
right-censored non-life reserving data.

Development triangle

The i.i.d. data :

 accident date.

 the delay between accident and report.

 is the evaluation date.
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Reserving as a survival problem



Direct inference on  is not feasible, as  are observed up to the cut-off date . By design
it holds

Four individual claims (A, B, C, D).
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By not following every policy, we are exposed to a right-truncation problem. A solution to the
right-truncation problem is to reverse the time leading to a tractable left-truncation problem,

Hiabu ( ).2017



Under usual conditions (p.60, Andersen et al. ( )), we consider the intensity of the
development-time reversed counting processes 

Let

with .
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We model the hazard function

We propose to model

where  is called the baseline hazard and  is the risk score; a component that
depends on the features  and the accident period  and some parameters .

(t|u,x) = P ( ∈ (t − h, t]|  (t) = 1, = , = u) .αR lim
h↓0

h−1 T R
i Yi Xi xi Ui

(t|u,x) = (t) ,αR αR0 eϕ(x,u;θ)

(t)αR0 eϕ(x,u;θ)
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Using a proportional model, we minimize the partial-likelihood at time 

to obtain an estimate  of .

We have the exposure set

and the occurrence set

while we indicate with  the cardinality of the set .

Finally .
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Using a proportional model, we minimise the partial-likelihood at time 

We extended the current survival analysis algorithms to model left-truncated data.

Model Effects modeling Reference

COX Gray ( )

NN Goodfellow,
Bengio, and
Courville
( )

XGB Chen and
Guestrin
( )
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Estimation of 

We extended the current survival analysis algorithms to model left-truncated data.

Model Effects modeling Reference

COX Gray ( )

NN Goodfellow,
Bengio, and
Courville
( )

XGB Chen and
Guestrin
( )

Estimation of 

Assuming uniform occurrences in the ties, we propose the following estimator for the baseline

ϕ (x,u; θ)
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Modelling the development factors



For , we propose to use the relation in Pittarello, Hiabu, and Villegas ( ) to
estimate the development factors as

j, k = 1,… ,m 2023

(x) = .f̂ k,j
2 + (j|k,x)α̂R

2 − (j|k,x)α̂R



For , we propose to use the relation in Pittarello, Hiabu, and Villegas ( ) to
estimate the development factors as

In Hiabu, Hofman, and Pittarello ( ), we show that we can obtain  for a granularity

, with  and .
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For , we propose to use the relation in Pittarello, Hiabu, and Villegas ( ) to
estimate the development factors as

j, k = 1,… ,m 2023

(x) = .f̂ k,j
2 + (j|k,x)α̂R

2 − (j|k,x)α̂R



Simulated data



We evaluate our models on five simulated scenarios, with same data composition.

Covariates Description

Claim_number Policy identifier.

Claim_type Type of claim.

AD Accident day.

RD Reporting day.

DD Development day.

There are different effects on 

Scenario Effect(s) on CL COX NN XGB

Alpha claim_type ✔ ✔ ✔ ✔

Beta claim_type ✖️ ✔ ✔ ✔

Gamma claim_type + claim_type: AD ✖️ ✖️ ✔ ✔

Delta claim_type + AD ✖️ ✔ ✔ ✔

Epsilon claim_type ✔ ✖️ ✖️ ✖️

ϕ

ϕ
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There are different effects on 

Scenario Effect(s) on CL COX NN XGB

Delta claim_type + AD ✖️ ✔ ✔ ✔

Epsilon claim_type ✔ ✖️ ✖️ ✖️

Scenario delta includes seasonality in claim reporting. Epsilon breaks the model assumptions.

We evaluate our models on five simulated scenarios, with same data composition.

Covariates Description

Claim_number Policy identifier.

Claim_type Type of claim.

AD Accident month.

RD Reporting month.

DD Development month

ϕ

ϕ



Modelling strategy
For each scenario (Delta, Epsilon), we show the average results over  simulations.

For each simulation:

1. We optimise COX, NN, XGB hyper-parameters using a Bayesian approach (Snoek, Larochelle,
and Adams ( )).

2. We fit our models.

3. We predict future IBNR.

4. We evaluate the models performances.
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The (average) Continuously Ranked Probability Score (CRPS, Gneiting and Raftery ( )).2007

CRPS( (z|X,U), y) = ( (z|X,U) − I{y > z} dz,Ŝ ∫
∞

0
Ŝ )2

(j|X,U) = .Ŝ
1

(x)∏j

l=1 f̂ k,l



Absolute Total Error on future calendar years ( ).

The (average) Continuously Ranked Probability Score (CRPS, Gneiting and Raftery ( )).

ARETOT

2007



Absolute Total Error on future calendar years, with updating information ( ).

Absolute Total Error on future calendar years ( ).

The (average) Continuously Ranked Probability Score (CRPS, Gneiting and Raftery ( )).

ARECAL

ARETOT

2007



, and CRPS in scenario Delta

Model CRPS

CL (✖️) 0.300 (  0.024) -

COX(✔) 0.195 (  0.022) 386.598 (  6.667)

NN (✔) 0.213 (  0.034) 388.707 (  7.205)

XGB (✔) 0.167 (  0.019 ) 369.531 (  6.599)

ARETOT

ARETOT

±

± ±

± ±

± ±



, and CRPS in scenario Delta

Model CRPS

CL (✖️) 0.300 (  0.024) -

COX(✔) 0.195 (  0.022) 386.598 (  6.667)

NN (✔) 0.213 (  0.034) 388.707 (  7.205)

XGB (✔) 0.167 (  0.019 ) 369.531 (  6.599)

 (quarters), and  (years) in scenario
Delta

Model  (quarters)  (years)

CL (✖️) 0.234 (  0.018) 0.037 (  0.012)

COX(✔) 0.192 (  0.018) 0.065 (  0.020)

NN (✔) 0.204 (  0.025) 0.051 (  0.023)

XGB (✔) 0.145 (  0.011) 0.058 (  0.025)

ARETOT

ARETOT

±

± ±

± ±

± ±

ARECAL ARECAL

ARECAL ARECAL

± ±

± ±

± ±

± ±



The average (over the simulations) of the relative errors: 
(x)− (x)∑x Ok,j ∑x Ôk,j

(x)∑x Ok,j



, and CRPS in scenario Epsilon.

Model CRPS

CL (✔) 0.119 (  0.011) -

COX (✖️) 0.135 (  0.022) 340.267 (  5.192)

NN (✖️) 0.132 (  0.015) 341.169 (  5.210)

XGB (✖️) 0.149 (  0.059) 340.344 (  5.100)

 (quarters), and  (years) in scenario Epsilon

Model  (quarters)  (years)

CL (✔) 0.115 (  0.010) 0.035 (  0.010)

COX (✖️) 0.127 (  0.010) 0.060 (  0.015)

NN (✖️) 0.126 (  0.011) 0.059 (  0.019)

XGB (✖️) 0.127 (  0.012) 0.057 (  0.017)

ARETOT

ARETOT

±

± ±

± ±

± ±

ARECAL ARECAL

ARECAL ARECAL

± ±

± ±

± ±

± ±



Final remarks

Introduced feature dependent development factors.

Simulation study indicates methodology seems to work.

Next step would be to include outstanding claim amounts.

For case study and further simulations please refer to original manuscript and R-package.



Thank you for your attention!



Performance measures
Absolute Total Error on future calendar years, with updating information ( ) .

Absolute Total Error on future calendar years ( ).

The (average) Continuously Ranked Probability Score (CRPS, Gneiting and Raftery ( )).
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Supplementary material A: Usual conditions
Let  be a probability space. Consider the filtration:

When the complete set of assumptions hold, we say that  satisfies the usual conditions (les
conditions habitue lies):

 for all . (increasing)

 for all . (right-continuous)

. (complete)

We also require that the intensity  exists and is piecewise continuous.

(Ω,F ,P)

( : t ∈ T ) .Ft

Ft

⊆ ⊆ FFs Ft s < t

=Fs ⋂t>s Ft s

A ⊆ B ∈ F , P(B) = 0 ⇒ A ∈ F0

λ(T − )T R
i
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