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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s

Set-up
Let P ∈ P be the observed distribution of (X,A,Y ) from the set of
distributions P where

X ∈ X is a set of risk factors,
A ∈ A is a set of protected features,
Y ∈ R is the response variable.

Consider the mapping m : X × A → R and the stochastic error term ε ∈ R.
Assume that the response depends on the covariates via the structural
assignment

Y = m(X,A) + ε and EP [ε | X,A] = 0.

We identify m as

m(x,a) = m0 + mX(x) + mA(a) + mX,A(x,a),

with
m0 = EP [Y ],
mX : x 7→

∫
m(x,a)pA(a)da − m0,

mA : a 7→
∫

m(x,a)pX(x)dx − m0,
mX,A : (x,a) 7→ m(x,a) − mX(x) − mA(a) − m0.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s

Dependence removing shift
We can write the density of P as

p(x,a,y) = pY |X,A(y|x,a)pA|X(a|x)pX(x).

Definition (Dependence removing shift)
Let the map τ : P → P be the distributional shift such that the density of τ(P )
satisfies

τ(p)(x,a,y) = pY |X,A(y|x,a)pA(a)pX(x),

where τ(p) denotes the density of τ(P ).
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Unfairness

Definition (Unfair estimator)
We say that an estimator g : X → R is unfair if there exist a g̃ : X × A → R
such that

EP

[
(Y − g(X))2]

≤ EP

[
(Y − g̃(X,A))2]

, and (P : Observed)

Eτ(P )
[
(Y − g(X))2]

> Eτ(P )
[
(Y − g̃(X,A))2]

. (τ(P ): Dependence removing)

Proposition
We state the following results:

(i) The estimator EP [Y | X = x] in the case cov(X,A) ̸= 0 is unfair.
(ii) The best not unfair estimator is

m0 + mX(X) =
∫

m(x,a)pA(a)da.

In particular, if mX(X) = 0 then the best not unfair estimator is a
constant.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s

Proposing an estimator for m0 + mX(X) =
∫

m(x,a)pA(a)da

Assumption
No interactions exist between X and A, i.e. mX,A(X,A) = 0.

Assume that A is a one-dimensional binary
random variable, i.e. A = {0,1}. We will
consider a partially linear model of the form

Y = θA + mX(X) + ε,

A = w(X) + εA,
with

E[ε | A,X] = 0,

E[εA | X] = 0.

In this model, it holds that

cov(Y − mX(X),A − w(X))
cov(A,A − w(X))

=
cov(θA + ε,εA)

cov(A,εA)

= θ +
cov(ε,εA)
cov(A,εA)

= θ.

A

W

Y

M

X

We obtain an estimator of θ by using the plug-in estimators of mX and w.
Finally, we determine the estimator of mX by training a machine learning model to
Y − θ̂A with features X.
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s

Numerical Example

Näıve:
∫

m̂(x,a)p̂A(a)da.

A = Bern(0.5),
X1 = αA + (1 − α)N(0,1),
X2 = N(0,1),
Y = sin(X2) + A + N(0,1).
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u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s

Unfairness Test

Theorem
Given an estimator g : X → R if we can find a benchmark estimator
g̃ : X × A → R such that

EP [(Y − g̃(X,A))2] ≤ EP [(Y − g(X))2], and
covP (mA(A), g̃(X,A)) < covP (mA(A),g(X)),

then g is unfair according to Definition 2 under Assumption 1.

Theorem
Assume that θ̂ is estimated on data different from (X,A,Y ). Then
√

n
(
ĉovP

(
θ̂A, g̃(X,A) − g(X)

)
− covP (θA, g̃(X,A) − g(X))

)
→ N

(
0,σ2)

,

as n → ∞, where σ2 = θ2 varP ((A −EP [A])(g(X) −EP [g(X)])).

We can now construct a test for

H0 : covP (θA, g̃(X,A) − g(X)) < 0.
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Numerical Example
We choose γ ∈ R such that when we add γθ̂A to our proposed estimator
it has the same performance under P as the plug-in estimator. Now, we
consider the difference in the estimators’ covariances with θ̂A.
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Thank you for your attention.
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