

Non-crossing neural network quantile regression estimation for driving data with telematics

Xenxo Vidal-Llana¹², Montserrat Guillén¹

¹Universitat de Barcelona RiskCenter Barcelona, Spain

Facultat d'Economia i Empresa

² juanjose.vidal@ub.edu June 15-16, 2023

イロト イポト イヨト イヨト

Motivation	Dataset	Results	Conclusions	Appendix	References

Outline

1 Motivation

2 Dataset

3 Results

æ

- 4 回 ト 4 三 ト 4 三 ト

Motivation •0000000	Dataset ⊙	Results	Conclusions o	Appendix 0000	References

Risk evaluation

• Evaluation of heavy tailed distributions is a crucial part of risk assessment.

E

イロト イヨト イヨト イヨト

Motivation ●0000000	Dataset ⊙	Results	Conclusions O	Appendix 0000	References

Risk evaluation

- Evaluation of heavy tailed distributions is a crucial part of risk assessment.
- When datasets present **long conditional tails** on their response variables, algorithms based on **Quantile Regression** have been widely used to assess extreme quantile behaviors.

Motivation	Dataset	Results	Conclusions	Appendix	References
○●○○○○○○	o		O	0000	O
T 7 1				1 75 •1	

Value at Risk (VaR) and Conditional Tail Expectation (CTE)

Definition

$$\mathsf{VaR}_q(Y) = \inf\{y \in \mathbb{R} | \mathsf{F}_Y(y) > q\} = \mathsf{F}_Y^{-1}(1-q)$$

where F_Y is the distribution function of the random continuous variable Y.

同下 くほと くほと

Motivation	Dataset	Results	Conclusions	Appendix	References
○●○○○○○○	o		O	0000	O

Value at Risk (VaR) and Conditional Tail Expectation (CTE)

Definition

$$\mathsf{VaR}_q(Y) = \inf\{y \in \mathbb{R} | F_Y(y) > q\} = F_Y^{-1}(1-q)$$

where F_Y is the distribution function of the random continuous variable Y.

Definition

$$\mathsf{CTE}_q(Y) = \mathbb{E}[Y|Y \geq \mathsf{VaR}_q(Y)]$$

・ロト ・回ト ・ヨト ・ヨト

Motivation	Dataset	Results	Conclusions	Appendix	References
00●00000	○		O	0000	O
Value	at Dial- (d Canditi		

Expectation (CTE)

Motivation	Dataset	Results	Conclusions	Appendix	References
00●00000	O		O	0000	O
Value	at Diale (d Canditi		

Expectation (CTE)

Motivation	Dataset ○	Results	Conclusions O	Appendix 0000	References O
Elicitat	oility of	CTE			

• The definition of elicitability can be reduced into the **existence of a scoring function** that is strictly consistent (Gneiting (2011)).

Motivation	Dataset	Results	Conclusions	Appendix	References
000●0000	O		O	0000	O
Elicitab	ility of	CTE			

- The definition of elicitability can be reduced into the **existence of a scoring function** that is strictly consistent (Gneiting (2011)).
- Acerbi and Szekely (2014) found a consistent scoring function but did not opened the discussion of elicitability.

Motivation	Dataset ○	Results	Conclusions O	Appendix 0000	References O
Elicitat	oility of	CTE			

- The definition of elicitability can be reduced into the **existence of a scoring function** that is strictly consistent (Gneiting (2011)).
- Acerbi and Szekely (2014) found a consistent scoring function but did not opened the discussion of elicitability. Afterwards, Fissler and Ziegel (2016) prove that **CTE alone it is not elicitable, but the pair (VaR, CTE) is**.

Motivation	Dataset	Results	Conclusions	Appendix	References
00000000					

Scoring functions

Scoring Function - VaR (Koenker and Bassett Jr (1978))

$$\rho_q(r_1, y) = (q - \mathbb{1}_{\{y-r_1 < 0\}})(y - r_1)$$

向下 イヨト イヨト

Motivation	Dataset	Results	Conclusions	Appendix	References
00000000					

Scoring functions

Scoring Function - VaR (Koenker and Bassett Jr (1978))

$$\rho_q(r_1, y) = (q - \mathbb{1}_{\{y - r_1 < 0\}})(y - r_1)$$

Scoring Function - CTE (Fissler and Ziegel (2016))

$$S_q(r_1, r_2, y) = \mathbb{1}_{\{y > r_1\}} \big(-G_1(r_1) + G_1(y) - G_2(r_2)(r_1 - y) \big) + (1 - q) \big(G_1(r_1) - G_2(r_2)(r_2 - r_1) + \mathcal{G}_2(r_2) \big)$$

with G_1 being an increasing function, \mathcal{G}_2 an increasing and concave function and $\mathcal{G}_2' = G_2$

(日) (图) (문) (문) [

Motivation 00000●00	Dataset ⊙	Results	Conclusions O	Appendix 0000	References

• Acerbi and Szekely (2014) realized a non-crossing problem between the VaR and the CTE

Motivation	Dataset	Results	Conclusions	Appendix	References
00000●00	○		O	0000	O
.	•		-		

• Acerbi and Szekely (2014) realized a non-crossing problem between the VaR and the CTE, namely $VaR_q(y_i) \leq CTE_q(y_i)$.

Motivation	Dataset	Results	Conclusions	Appendix	References
00000●00	⊙		O	0000	O

- Acerbi and Szekely (2014) realized a non-crossing problem between the VaR and the CTE, namely $VaR_q(y_i) \leq CTE_q(y_i)$.
- But what about several quantile levels?

Motivation	Dataset	Results	Conclusions	Appendix	References
000000●0	o	0000	O	0000	

• The problem of crossing quantiles' line of research was created by He (1997) and Yu et al. (2003)

Motivation 000000●0	Dataset ○	Results	Conclusions O	Appendix 0000	References
Non-cro	ssing al	gorithm	s 2		

• The problem of crossing quantiles' line of research was created by He (1997) and Yu et al. (2003), namely $VaR_{q_0}(y_i) \leq VaR_{q_1}(y_i)$

Motivation	Dataset	Results	Conclusions	Appendix	References
000000●0	O		O	0000	O
Non-cro	ssing al	gorithm	s 2		

- The problem of crossing quantiles' line of research was created by He (1997) and Yu et al. (2003), namely $VaR_{q_0}(y_i) \leq VaR_{q_1}(y_i)$
- Recent advances use neural networks (see Cannon (2018) and Moon et al. (2021))

Motivation 000000●0	Dataset ○	Results	Conclusions O	Appendix 0000	References
ъ.т	• •	• • •	~		

- The problem of crossing quantiles' line of research was created by He (1997) and Yu et al. (2003), namely $VaR_{q_0}(y_i) \leq VaR_{q_1}(y_i)$
- Recent advances use neural networks (see Cannon (2018) and Moon et al. (2021))
- Vidal-Llana et al. (2022) presented an approach to a multiple quantile levels for VaR and CTE estimation with non-crossing conditions

Motivation	Dataset	Results	Conclusions	Appendix	References
0000000●	O		O	0000	O
Ohiecti	ve				

• Showcase the problematic of crossing quantiles across VaRs and between a VaR and its CTE under a telematics context

•

 $\equiv 1$

Motivation 0000000●	Dataset O	Results	Conclusions O	Appendix 0000	References
Objecti	NO				

- Showcase the problematic of crossing quantiles across VaRs and between a VaR and its CTE under a telematics context
- Compare a classical approach to several quantile levels against a methodology that assures non-crossing conditions

DICCUI

Motivation	Dataset	Results	Conclusions	Appendix	References
	•				

Dataset

Telematic information from year 2015 of 9,614 drivers from a Spanish insurance company

Motivation	Dataset ⊙	Results ●000	Conclusions O	Appendix 0000	References

Crossing example

< ∃→

æ

999

* 臣

< □ > < 同

Motivation	Dataset	Results	Conclusions	Appendix	References
		0000			

Crossings on a Two Step approach

E

Motivation	Dataset	Results	Conclusions	Appendix	References
		0000			

Crossings on a Two Step approach

q_i - q_{i+1}	0.9 - 0.925	0.925 - 0.95	0.95 - 0-975	0.975 - 0.99
$VaR_{q_i} > VaR_{q_{i+1}}$	3 (0%)	1 (0%)	2 (0%)	2 (0%)
$CTE_{q_i} > CTE_{q_{i+1}}$	0 (0%)	541 (6%)	1,560 (16%)	176 (2%)

E

Motivation	Dataset	Results	Conclusions	Appendix	References
		0000			

Murphy Diagrams: CTE comparison

Э

Motivation	Dataset	Results	Conclusions	Appendix	References
0000000		0000		0000	

Loss improvement

999

Motivation	Dataset O	Results	Conclusions •	Appendix 0000	References
Conclus	sions				

• Inside an insurance company pricing scheme, **crossing predictions become unfeasible estimations**, thus the usefulness of non-crossing algorithms

Motivation	Dataset ○	Results	Conclusions •	Appendix 0000	References O
Conclusi	ons				

- Inside an insurance company pricing scheme, **crossing predictions become unfeasible estimations**, thus the usefulness of non-crossing algorithms
- For financial practitioners, and after Basel III recommendations, non-crossing predictions help assess bank reserves in a more consistent way

Motivation	Dataset	Results	Conclusions	Appendix	References
				•000	

Additional results I

æ

イロト イヨト イヨト イヨト

Motivation	Dataset	Results	Conclusions	Appendix	References
0000000		0000		0000	

Additional results II

Motivation	Dataset	Results	Conclusions	Appendix	References
0000000		0000		0000	

GitHub Repository

Q Search or jump to	7 Pull requests Issues Codespaces Marketplace E	xplore	Q +• 🐉•			
JuanJoseVidal/ncdnn Public						
↔ Code ⊙ Issues 1 Pull requests	s 📀 Actions 🖽 Projects 🖽 Wiki 🕕 Security 🗠 Insigh	ts 🕸 Settings				
🐉 main 👻 🥵 1 branch 🛯 🗞 0 tags	Go to file Add file *	<> Code +	About 🕸			
Juan José Vidal Llana and Juan Jos	ié Vidal Llana Modify README to add acknowled b85719e on Mar 2	2 commits	No description, website, or topics provided.			
aux_code						
🖿 data			✿ 0 stars			
🖿 nn						
README.md						
C environment.yml			Releases			
🗅 main.py			No releases published			
E README.md						
Non-Crossing Dua	Non-Crossing Dual Neural Network					
This is a repository in regards of the article "Non-Crossing Dual Neural Network: Joint Value at Risk and Conditional Tail Expectation estimations with Non-Crossing Conditions" (Working Paper).						

GitHub NCDNN Repository

æ

Motivation	Dataset	Results	Conclusions	Appendix	References
0000000		0000		0000	

Special acknowledgements

- Spanish Ministry of Science: "PID2019-105986GB-C21/AEI/10.13039/501100011033"
- NextGenerationEU: "TED2021-130187B-I00"

Motivation	Dataset ○	Results	Conclusions O	Appendix 0000	References ○
Referen	ces				

- Acerbi, C. and Szekely, B. (2014). Back-testing expected shortfall. *Risk*, 27(11):76–81.
- Cannon, A. J. (2018). Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with application to rainfall extremes. *Stochastic Environmental Research and Risk Assessment*, 32(11):3207–3225.
- Fissler, T. and Ziegel, J. F. (2016). Higher order elicitability and Osband's principle. *The Annals of Statistics*, 44(4):1680–1707.
- Gneiting, T. (2011). Making and evaluating point forecasts. *Journal of the American Statistical Association*, 106(494):746–762.

He, X. (1997). Quantile curves without crossing. *The American Statistician*, 51(2):186–192.

Motivation	Dataset	Results	Conclusions	Appendix	References

List of References

- Koenker, R. and Bassett Jr, G. (1978). Regression quantiles. *Econometrica:* Journal of the Econometric Society, 46(1):33–50.
- Moon, S. J., Jeon, J.-J., Lee, J. S. H., and Kim, Y. (2021). Learning multiple quantiles with neural networks. *Journal of Computational and Graphical Statistics*, 30(4):1238–1248.
- Vidal-Llana, X., Salort Sánchez, C., Coia, V., and Guillén, M. (2022). Noncrossing dual neural network: Joint value at risk and conditional tail expectation estimations with non-crossing conditions. *Documents de Treball* (*IREA*), 2022(15):1.
- Yu, K., Lu, Z., and Stander, J. (2003). Quantile regression: applications and current research areas. *Journal of the Royal Statistical Society: Series* D (The Statistician), 52(3):331–350.

イロト イヨト イヨト イヨト 二日

Motivation	Dataset	Results	Conclusions	Appendix	References
					•

Thank you! Any questions?

E