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Prompt: Machine learning engineers working on an important, revolutionary
problem, dark cyberpunk style
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What is ML Ops?

Principles, processes, technologies for
operationalising ML

To ML what DevOps is to development

What works for 2 models does not work
for 20

Key objectives:

- Increased development speed

- Reduced errors in development and production
- Faster time to market

- Faster model updates and automatic retraining

Monitoring and observability



6 pure premium models
(autocalibrated boosted decision
trees*; 45% of GWP)

Churn models (logistic regression) CUStO'TIer Lifetin‘]e

Various other model components (CPI
forecasts, time value of money, Value
administration costs, ...)

* Denuit, Charpentier, & Trufin (2021). Autocalibration and Tweedie-dominance for insurance pricing with machine learning.
Ciatto et al. (2022). Does autocalibration improve goodness of lift?
Hainaut, Trufin, & Denuit (2022). Response versus gradient boosting trees, GLMs and neural networks under Tweedie loss and log-link.

Wathrich, M. (2023). Model selection with Gini indices under auto-calibration.



Accelerating Machine Learning

(while making fewer errors)



[Feature store
Most ML projects start with feature engineering

Feature stores standardise features, make them reusable, and enforce production

quality code
A single interface for retrieving features irrespective of whether you are in a

development or production environment
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Batch-only
Stored in an Azure SQL database

Column names as contracts *

Eika’'s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/



Batch-only
Stored in an Azure SQL database

Column names as contracts *

AMT-PersOrg-Mean_claim_cost- M05-0_to_6_months

An amount, as opposed to an integer/count
(N_), or categorical variable (CAT.)

Eika’'s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/



Batch-only
Stored in an Azure SQL database

Column names as contracts *

AMT- PersOrg-Mean_claim_cost- M05-0_to_6_months

Entity is a person or organisation (as opposed
to an agreement, object, or other entity)

Eika’'s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/



Batch-only
Stored in an Azure SQL database

Column names as contracts *

AMT- PersOrg-Mean_claim_costMO05-0_to_6_months

The metric being used (in this case the mean
claim cost)

Eika’'s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/



Batch-only
Stored in an Azure SQL database

Column names as contracts *

AMT- PersOrg-Mean_claim_cost- M05-0_to_6_months

The product code for which this feature applies
(MO5 = car insurance)

Eika’'s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/



Batch-only
Stored in an Azure SQL database

Column names as contracts *

AMT- PersOrg-Mean_claim_cost- M05-0_to_6_months

The time period for which the aggregation
happens (in this case we take the mean over
the last 6 months)

Eika’'s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/



Batch-only
Stored in an Azure SQL database

Column names as contracts

AMT- PersOrg- Mean_claim_cost- M05-0_to_6_months

The time period for which the aggregation
happens (in this case we take the mean over
the last 6 months)

Custom Python library for interacting with the store

from effstools.feature_store import FeatureStore
feature_store = FeatureStore()

feature_store.select_columns(
feature_store.get_level(2) == “Mean_claim_cost”

)

feature_store.to_sql(...)

Eika’'s feature store



Big mindset change: tailoring — manufacturing
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- Big mindset change: tailoring — manufacturing

Preprocessing

Building a model
factory

using reusable components



« Big mindset change: tailoring — manufacturing
« Reusable components in AzureML

name: fit_loss_ratio_model

Building a model
factory

using reusable components

command: >-
Rscript fit_loss_ratio_model.R
--train_input_path ${{inputs.train_input_path}}
--smoothing_input_path ${{inputs.smoothing_input_path}}
--params_input_path ${{inputs.params_input_path}}
--model_output_path ${{outputs.model_output_path}}

fit_loss_ratio_model = ml_client.components.get(name="fit_loss_ratio_model", version="0.0.8")



If you learned nothing else...

A feature store dramatically increases development speed and reduces errors in
development and production

If you can, choose a commercial ML platform + feature store and use a thought through
framework for structuring your features

Consider approaching machine learning as a process of manufacturing: build models using
quality-controlled, production-grade reusable components

Data scientists Actuaries
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