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Prompt: Machine learning engineers working on an important, revolutionary 

problem, dark cyberpunk style



Eika Forsikring
 Established in 1999, based in Hamar

 Bancassurance with relatively rural 

customer base

 Gross Written Premium ≈€331m (3.9b 

NOK)

 Small analytics team: 

- 3 data scientists

- 2 pricing actuaries

- 8 analysts/engineers/architects



What is ML Ops?

 Principles, processes, technologies for 

operationalising ML

 To ML what DevOps is to development

 What works for 2 models does not work

for 20

 Key objectives:
- Increased development speed

- Reduced errors in development and production

- Faster time to market

- Faster model updates and automatic retraining

 Monitoring and observability



Customer Lifetime 
Value

 6 pure premium models

(autocalibrated boosted decision

trees*; 45% of GWP)

 Churn models (logistic regression)

 Various other model components (CPI 

forecasts, time value of money, 

administration costs, …)

* Denuit, Charpentier, & Trufin (2021). Autocalibration and Tweedie-dominance for insurance pricing with machine learning.

Ciatto et al. (2022). Does autocalibration improve goodness of lift? 

Hainaut, Trufin, & Denuit (2022). Response versus gradient boosting trees, GLMs and neural networks under Tweedie loss and log -link.

Wüthrich, M. (2023). Model selection with Gini indices under auto-calibration. 



Accelerating Machine Learning
(while making fewer errors)



Feature store
• Most ML projects start with feature engineering

• Feature stores standardise features, make them reusable, and enforce production

quality code

• A single interface for retrieving features irrespective of whether you are in a 

development or production environment



 Batch-only

 Stored in an Azure SQL database

 Column names as contracts *

Eika’s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/



An amount, as opposed to an integer/count 

(N_), or categorical variable (CAT_)

 Batch-only

 Stored in an Azure SQL database

 Column names as contracts *

Eika’s feature store

M05-AMT- Mean_claim_cost-PersOrg- 0_to_6_months

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/



 Batch-only

 Stored in an Azure SQL database

 Column names as contracts *

Eika’s feature store

M05-AMT- Mean_claim_cost-PersOrg- 0_to_6_months

Entity is a person or organisation (as opposed 

to an agreement, object, or other entity)

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/



 Batch-only

 Stored in an Azure SQL database

 Column names as contracts *

Eika’s feature store

M05-AMT- Mean_claim_cost-PersOrg- 0_to_6_months

The metric being used (in this case the mean 

claim cost)

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/



 Batch-only

 Stored in an Azure SQL database

 Column names as contracts *

Eika’s feature store

M05-AMT- Mean_claim_cost-PersOrg- 0_to_6_months

The product code for which this feature applies

(M05 = car insurance)

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/



 Batch-only

 Stored in an Azure SQL database

 Column names as contracts *

Eika’s feature store

M05-AMT- Mean_claim_cost-PersOrg- 0_to_6_months

The time period for which the aggregation 

happens (in this case we take the mean over 

the last 6 months)

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/



 Batch-only

 Stored in an Azure SQL database

 Column names as contracts

Eika’s feature store

M05-AMT- Mean_claim_cost-PersOrg- 0_to_6_months

The time period for which the aggregation 

happens (in this case we take the mean over 

the last 6 months)

from effstools.feature_store import FeatureStore

feature_store = FeatureStore() 

feature_store.select_columns(

feature_store.get_level(2) == “Mean_claim_cost”

) 

feature_store.to_sql(...)

Custom Python library for interacting with the store



Building a model 
factory

using reusable components

• Big mindset change: tailoring → manufacturing



Building a model 
factory

using reusable components

• Big mindset change: tailoring → manufacturing

Preprocessing

Outer train test 

split

Hyperparameter 

optimisation

Fit and calibrate 

model

Inner train test 

split

Evaluate model Feature 

importances

Save model to 

ML flow

Refit model on 

full data

Train smooth split 

for final model



Building a model 
factory

using reusable components

• Big mindset change: tailoring → manufacturing

• Reusable components in AzureML

$schema: https://azuremlschemas.azureedge.net/latest/commandComponent.schema.json
type: command

name: fit_loss_ratio_model
display_name: Fit loss ratio model
description: Fit loss ratio model and calibration model on training set and smoothing set respectively, u
sing the supplied parameters
version: 0.0.8
inputs:

train_input_path:
type: uri_file

smoothing_input_path:
type: uri_file

params_input_path:
type: uri_file

outputs:
model_output_path:

type: uri_file
code: src/fit_loss_ratio_model
environment: azureml:risikomodell_r_env@latest
command: >-

Rscript fit_loss_ratio_model.R
--train_input_path ${{inputs.train_input_path}}
--smoothing_input_path ${{inputs.smoothing_input_path}}
--params_input_path ${{inputs.params_input_path}}
--model_output_path ${{outputs.model_output_path}}

group_split = ml_client.components.get(name="group_split", version="0.0.2")
tune_loss_ratio_model = ml_client.components.get(name="tune_loss_ratio_model", version="0.0.6")
fit_loss_ratio_model = ml_client.components.get(name="fit_loss_ratio_model", version="0.0.8")
evaluate_loss_ratio_model = ml_client.components.get(name="evaluate_loss_ratio_model", version="0.0.6")
inspect_loss_ratio_model = ml_client.components.get(name="inspect_loss_ratio_model", version="0.0.7")
save_model = ml_client.components.get(name="save_model", version="0.0.3")



If you learned nothing else…

• A feature store dramatically increases development speed and reduces errors in 

development and production

• If you can, choose a commercial ML platform + feature store and use a thought through 

framework for structuring your features

• Consider approaching machine learning as a process of manufacturing: build models using 

quality-controlled, production-grade reusable components
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