
Implementing ML
Ops in insurance

A case study using a complex multi-model

Customer Lifetime Value system

Sindre Henriksen, Eika Forsikring

Øyvind Klåpbakken, Eika Forsikring

Fredrik Wollert Hansen, Eika Forsikring

Prompt: Machine learning engineers working on an important, revolutionary

problem, dark cyberpunk style

Eika Forsikring
 Established in 1999, based in Hamar

 Bancassurance with relatively rural

customer base

 Gross Written Premium ≈€331m (3.9b

NOK)

 Small analytics team:

- 3 data scientists

- 2 pricing actuaries

- 8 analysts/engineers/architects

What is ML Ops?

 Principles, processes, technologies for

operationalising ML

 To ML what DevOps is to development

 What works for 2 models does not work

for 20

 Key objectives:
- Increased development speed

- Reduced errors in development and production

- Faster time to market

- Faster model updates and automatic retraining

 Monitoring and observability

Customer Lifetime
Value

 6 pure premium models

(autocalibrated boosted decision

trees*; 45% of GWP)

 Churn models (logistic regression)

 Various other model components (CPI

forecasts, time value of money,

administration costs, …)

* Denuit, Charpentier, & Trufin (2021). Autocalibration and Tweedie-dominance for insurance pricing with machine learning.

Ciatto et al. (2022). Does autocalibration improve goodness of lift?

Hainaut, Trufin, & Denuit (2022). Response versus gradient boosting trees, GLMs and neural networks under Tweedie loss and log -link.

Wüthrich, M. (2023). Model selection with Gini indices under auto-calibration.

Accelerating Machine Learning
(while making fewer errors)

Feature store
• Most ML projects start with feature engineering

• Feature stores standardise features, make them reusable, and enforce production

quality code

• A single interface for retrieving features irrespective of whether you are in a

development or production environment

 Batch-only

 Stored in an Azure SQL database

 Column names as contracts *

Eika’s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/

An amount, as opposed to an integer/count

(N_), or categorical variable (CAT_)

 Batch-only

 Stored in an Azure SQL database

 Column names as contracts *

Eika’s feature store

M05-AMT- Mean_claim_cost-PersOrg- 0_to_6_months

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/

 Batch-only

 Stored in an Azure SQL database

 Column names as contracts *

Eika’s feature store

M05-AMT- Mean_claim_cost-PersOrg- 0_to_6_months

Entity is a person or organisation (as opposed

to an agreement, object, or other entity)

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/

 Batch-only

 Stored in an Azure SQL database

 Column names as contracts *

Eika’s feature store

M05-AMT- Mean_claim_cost-PersOrg- 0_to_6_months

The metric being used (in this case the mean

claim cost)

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/

 Batch-only

 Stored in an Azure SQL database

 Column names as contracts *

Eika’s feature store

M05-AMT- Mean_claim_cost-PersOrg- 0_to_6_months

The product code for which this feature applies

(M05 = car insurance)

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/

 Batch-only

 Stored in an Azure SQL database

 Column names as contracts *

Eika’s feature store

M05-AMT- Mean_claim_cost-PersOrg- 0_to_6_months

The time period for which the aggregation

happens (in this case we take the mean over

the last 6 months)

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/

 Batch-only

 Stored in an Azure SQL database

 Column names as contracts

Eika’s feature store

M05-AMT- Mean_claim_cost-PersOrg- 0_to_6_months

The time period for which the aggregation

happens (in this case we take the mean over

the last 6 months)

from effstools.feature_store import FeatureStore

feature_store = FeatureStore()

feature_store.select_columns(

feature_store.get_level(2) == “Mean_claim_cost”

)

feature_store.to_sql(...)

Custom Python library for interacting with the store

Building a model
factory

using reusable components

• Big mindset change: tailoring → manufacturing

Building a model
factory

using reusable components

• Big mindset change: tailoring → manufacturing

Preprocessing

Outer train test

split

Hyperparameter

optimisation

Fit and calibrate

model

Inner train test

split

Evaluate model Feature

importances

Save model to

ML flow

Refit model on

full data

Train smooth split

for final model

Building a model
factory

using reusable components

• Big mindset change: tailoring → manufacturing

• Reusable components in AzureML

$schema: https://azuremlschemas.azureedge.net/latest/commandComponent.schema.json
type: command

name: fit_loss_ratio_model
display_name: Fit loss ratio model
description: Fit loss ratio model and calibration model on training set and smoothing set respectively, u
sing the supplied parameters
version: 0.0.8
inputs:

train_input_path:
type: uri_file

smoothing_input_path:
type: uri_file

params_input_path:
type: uri_file

outputs:
model_output_path:

type: uri_file
code: src/fit_loss_ratio_model
environment: azureml:risikomodell_r_env@latest
command: >-

Rscript fit_loss_ratio_model.R
--train_input_path ${{inputs.train_input_path}}
--smoothing_input_path ${{inputs.smoothing_input_path}}
--params_input_path ${{inputs.params_input_path}}
--model_output_path ${{outputs.model_output_path}}

group_split = ml_client.components.get(name="group_split", version="0.0.2")
tune_loss_ratio_model = ml_client.components.get(name="tune_loss_ratio_model", version="0.0.6")
fit_loss_ratio_model = ml_client.components.get(name="fit_loss_ratio_model", version="0.0.8")
evaluate_loss_ratio_model = ml_client.components.get(name="evaluate_loss_ratio_model", version="0.0.6")
inspect_loss_ratio_model = ml_client.components.get(name="inspect_loss_ratio_model", version="0.0.7")
save_model = ml_client.components.get(name="save_model", version="0.0.3")

If you learned nothing else…

• A feature store dramatically increases development speed and reduces errors in

development and production

• If you can, choose a commercial ML platform + feature store and use a thought through

framework for structuring your features

• Consider approaching machine learning as a process of manufacturing: build models using

quality-controlled, production-grade reusable components

Data scientists

Sindre HenriksenØyvind Klåpbakken Fredrik Wollert Hansen Maja Bratlien Larsen Kim André Arntsen

Actuaries

