Implementing ML
Ops in insurance

A case study using a complex multi-model
Customer Lifetime Value system

Sindre Henriksen, Eika Forsikring
@yvind Klapbakken, Eika Forsikring
Fredrik Wollert Hansen, Eika Forsikring

- S T ALt

LY,
S

.'-. <
»
s
T

Prompt: Machine learning engineers working on an important, revolutionary
problem, dark cyberpunk style

elka.

Eika Forsikring
e Established in 1999, based in Hamar

* Bancassurance with relatively rural
; customer base

FINLANO

ook e . * Gross Written Premium =€331m (3.9b
AR NOK)

-

P T el {gi, o |

Vel S - 3 data scientists

A i AV T - 2 pricing actuaries

) 2 S N e el !) . .

ko Te @ N A AT e b - 8 analysts/engineers/architects

\ 5 ! ¥
¥ t S
5 P Lo b

-
4

(=)

280 :
BN A S
=

What is ML Ops?

Principles, processes, technologies for
operationalising ML

To ML what DevOps is to development

What works for 2 models does not work
for 20

Key objectives:

- Increased development speed

- Reduced errors in development and production
- Faster time to market

- Faster model updates and automatic retraining

Monitoring and observability

6 pure premium models
(autocalibrated boosted decision
trees*; 45% of GWP)

Churn models (logistic regression) CUStO'TIer Lifetin‘]e

Various other model components (CPI
forecasts, time value of money, Value
administration costs, ...)

* Denuit, Charpentier, & Trufin (2021). Autocalibration and Tweedie-dominance for insurance pricing with machine learning.
Ciatto et al. (2022). Does autocalibration improve goodness of lift?
Hainaut, Trufin, & Denuit (2022). Response versus gradient boosting trees, GLMs and neural networks under Tweedie loss and log-link.

Wathrich, M. (2023). Model selection with Gini indices under auto-calibration.

Accelerating Machine Learning

(while making fewer errors)

[Feature store
Most ML projects start with feature engineering

Feature stores standardise features, make them reusable, and enforce production

quality code
A single interface for retrieving features irrespective of whether you are in a

development or production environment

2 HOPSWORKS 3 FEAST

l' @ L @ Amazon
'y SageMaker

databricks Azure Machine Learning

vertex.ai

Batch-only
Stored in an Azure SQL database

Column names as contracts *

Eika’'s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/

Batch-only
Stored in an Azure SQL database

Column names as contracts *

AMT-PersOrg-Mean_claim_cost- M05-0_to_6_months

An amount, as opposed to an integer/count
(N_), or categorical variable (CAT.)

Eika’'s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/

Batch-only
Stored in an Azure SQL database

Column names as contracts *

AMT- PersOrg-Mean_claim_cost- M05-0_to_6_months

Entity is a person or organisation (as opposed
to an agreement, object, or other entity)

Eika’'s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/

Batch-only
Stored in an Azure SQL database

Column names as contracts *

AMT- PersOrg-Mean_claim_costMO05-0_to_6_months

The metric being used (in this case the mean
claim cost)

Eika’'s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/

Batch-only
Stored in an Azure SQL database

Column names as contracts *

AMT- PersOrg-Mean_claim_cost- M05-0_to_6_months

The product code for which this feature applies
(MO5 = car insurance)

Eika’'s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/

Batch-only
Stored in an Azure SQL database

Column names as contracts *

AMT- PersOrg-Mean_claim_cost- M05-0_to_6_months

The time period for which the aggregation
happens (in this case we take the mean over
the last 6 months)

Eika’'s feature store

*Emily Riederer. https://emilyriederer.netlify.app/post/column-name-contracts/

Batch-only
Stored in an Azure SQL database

Column names as contracts

AMT- PersOrg- Mean_claim_cost- M05-0_to_6_months

The time period for which the aggregation
happens (in this case we take the mean over
the last 6 months)

Custom Python library for interacting with the store

from effstools.feature_store import FeatureStore
feature_store = FeatureStore()

feature_store.select_columns(
feature_store.get_level(2) == “Mean_claim_cost”

)

feature_store.to_sql(...)

Eika’'s feature store

Big mindset change: tailoring — manufacturing

G Data
pil risikoenodell data poroue

B Preprocess the input dataset
PreSIRICESS Shep

-]

80

I
&

tacet jpefid pat
O

H? Split dataset into two parts
i alit

Building a model

ftaset jpput path

L
H2 Split dataset into two parts

o using reusable components

r \Ic" 1

Thgut path dataset 1(' path
o O
EE Tuning step for loss ratio model using cr...) Spht dataset into two parts
tuning comnplhete: train smoothing split

@ v |oo0s & v|ooa

=20

rain . smoghir

o] O O O O

. }
R Fir atio model B Fit loss ratio model
n fit camplee fit

& v|oos

Ch
| gt
b m I
A L A
O

H Evaluate the fitted models HE Imspect intemals of fitted models H: Save model 1o
inspect At

MLFlow
evaluate P

& wv|oas @ wv|oos & v|oos

- Big mindset change: tailoring — manufacturing

Preprocessing

Building a model
factory

using reusable components

« Big mindset change: tailoring — manufacturing
« Reusable components in AzureML

name: fit_loss_ratio_model

Building a model
factory

using reusable components

command: >-
Rscript fit_loss_ratio_model.R
--train_input_path ${{inputs.train_input_path}}
--smoothing_input_path ${{inputs.smoothing_input_path}}
--params_input_path ${{inputs.params_input_path}}
--model_output_path ${{outputs.model_output_path}}

fit_loss_ratio_model = ml_client.components.get(name="fit_loss_ratio_model", version="0.0.8")

If you learned nothing else...

A feature store dramatically increases development speed and reduces errors in
development and production

If you can, choose a commercial ML platform + feature store and use a thought through
framework for structuring your features

Consider approaching machine learning as a process of manufacturing: build models using
quality-controlled, production-grade reusable components

Data scientists Actuaries

? ”

@yvind Klapbakken Sindre Henriksen Fredrik Wollert Hansen Maja Bratlien Larsen Kim André Arntsen

