

Lux War Risk Model

Predicting Armed Conflict using Machine Learning

Navarun Jain

Actuarial Manager

Lead Model Developer

Presentation Agenda

Introduction

Motivation

- Civil war and organised violence continue to erupt throughout the world into the 21st century
- Armed conflict appears to be more likely in some countries than in others
- Can we potentially predict armed conflicts before they occur?
- Can we use data to understand what drives armed conflict, especially in regions without current conflict?
- Can such information help guide insurance risk assessment and underwriting?

Armed Conflict

A state-based armed conflict is a contested incompatibility that concerns government and/or

territory where the use of armed force between two parties, of which at least one is the government

of a state, results in at least 25 battle-related deaths in one calendar year.

(UCDP Official Definition)

Data

Examples of Indicators

Data Splits				
Training Set	 Used to train War Risk Model 1950 - 2018 			
Validation Set	 Used to evaluate Model 2019 - 2020 			
Future Set	 Based on indicator forecasts 2021 - 2024 			

Algorithm

Artificial Neural Network (ANN)

Structured Sequential Model

Structured: A Neural Network has a defined structure that consists of 3 types of layers

Sequential: Information flows in a sequence from one layer to the next, undergoing operations at each layer – almost like an assembly line

LUX WAR RISK MODEL

 $10 (\langle \rangle \rangle)$

Training Process

LUX ACTUARIES

Model Evaluation on Test Data – Final Candidates

Model Evaluation Statistics							
Model	Accuracy	Precision	Recall	F2 Score	AUC		
A1_M4	95.54	87.63	81.49	82.65	89.74		
A2_M3	95.52	87.73	81.18	82.41	89.60		
A1_M1	95.36	86.59	81.34	82.34	89.57		
A2_M7	90.78	63.59	88.80	82.28	89.96		
A1_M8	89.83	60.79	88.96	81.41	89.47		
A2_M5	95.29	88.85	78.07	80.01	88.18		
A1_M3	94.89	86.13	78.23	79.69	88.01		
A1_M5	95.43	90.83	76.98	79.40	87.81		
A1_M2	95.06	88.10	77.14	79.11	87.66		
A2_M6	94.89	87.41	76.67	78.60	87.37		
A2_M4	94.36	84.94	75.43	77.16	86.55		
A2_M1	94.36	84.94	75.43	77.16	86.55		
A2_M2	94.87	90.40	73.25	76.14	85.95		
A1_M7	14.88	14.86	100.00	46.60	50.01		
A1_M6	72.00	23.88	40.44	35.51	58.97		
A2_M8	28.00	11.13	55.05	30.77	39.17		
A1_M9	85.17	57.14	0.62	0.78	50.27		

Accuracy: Percentage of total cases correctly identified

Recall: Percentage of actual conflicts correctly identified

Precision: Percentage of predicted conflicts correctly identified

F2 Score: Weighted average of Precision and Recall (more weight given to Recall over Precision)

AUC: Indicator of how well the model can distinguish between conflict/peace

Final Model

A1_M8 – 89% Accuracy, 89% Recall

Model with high Recall preferred

This was highly effective at capturing **future armed conflicts**

Predictions & Key Insights

Future Predictions – 2023

Exploring the Key Drivers of Conflict Risk

Exploring the Key Drivers of Conflict Risk

Exploring the Key Drivers of Conflict Risk

 $18 (\langle \rangle \rangle)$

Conclusions

Potential Insurance Applications

Terrorism/ Passive	Political Risk	Business Interruption
War Risk Insurance	Insurance	Insurance
Region-based Liability	Property/Casualty	Marine/Aviation
Insurance	Insurance	Insurance
	Cat Exposure Management/Pricing – Insurers and Reinsurers	

LUX WAR RISK MODEL 20 (<)

Future Development Roadmap

- Still quite early days in development, further testing and refinement of insights continually targeted
- Credibility of data for certain countries may be questioned, eg. China, Taiwan, Palestine, North Korea
- More enhanced data engineering process audits to be implemented can identify potential gaps and help improve quality of existing data

LUX WAR RISK MODEL

21 $(\langle \rangle)$

- Deeper dive into key drivers of conflict risk can help understand interactions and nature of relations between national indicators and likelihoods of armed conflict active development ongoing on this
- Availability of data at more granular (subnational) level can generate more localized predictions of armed conflict risk
- Could consider targeted region-based models instead of a global approach

Contact

Navarun Jain

Actuarial Manager, Lux UAE (Dubai)

navarun.jain@luxactuaries.com +971 58 904 1352