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The presentation is based on the paper

“Local bias adjustment, duration-weighted probabilities, and
automatic construction of tariff cells”

in Scandinavian Actuarial Journal (available online), written
together with Filip Lindskog and Johan Palmquist

I will also refer to results from a recent SSRN pre-print on effects
of violating GLM assumptions, written together with Taariq Nazar



Outline of the presentation

I Background to predictive non-life insurance pricing

I Bias, auto-calibration, and auto-tariffication

I Numerical examples

Remarks.

I Details about dispersion modelling have been omitted,
although included in the numerical examples (see appendix)

I Notation will at times be informal



Non-life insurance pricing

I What is it that we observe?
I Data (Z ,X ,W ), where

I Z ∈ R+ is the response, e.g. no. of claims or claim cost
I X ∈ X is a covariate vector
I W ∈ R+ is a weight, e.g. duration

For the remainder of the presentation we will refer to W as
duration



Non-life insurance pricing

I In practice we are often interested in e.g.
I claim frequency
I average claim cost
I the pure premium = claim cost / duration

and we model variables of the type Y = Z/W

I In retrospect W is known, but when a premium is paid W is
random

I Costs and premium calculations?



Non-life insurance pricing

I Let Z denote the claim cost

I The actuarially fair premium, π(X ), is defined by

E[Wπ(X ) | X ] = E[Z | X ] (= E[WY | X ])

⇔ Expected earned premium = expected claim cost

I That is

π(X ) :=
E[Z | X ]

E[W | X ]
= E

[
W

E[W | X ]︸ ︷︷ ︸
=duration weights=:PW

Y | X

]
=: EPW

[Y | X ],

and π(X ) is the expected duration adjusted claim cost



Non-life insurance pricing

I Next, note that if we define

µW (X ) := EPW
[Y | X ],

it holds that

µW (X ) ∈ arg min
g

EPW
[(Y − g(X ))2],

for all g such that E[g(X )2] <∞
I Thus, by using the rescaling PW we can optimise “as usual”



Non-life insurance pricing

Remarks.

I If we make the additional “GLM” assumption

E[Z | X ,W ] = Wλ(X ),

it follows that
EPW

[Y | X ] = E[Y | X ],

see (Lindholm et al. 2023, Prop. 2.1)

I GLMs, or EDF models, can be treated analogously as above
by replacing the L2 unit deviance, see Lindholm et al. (2023)



Bias and auto-calibration

I Assume that we have a predictor µ̂(X )

I We will stay in L2 and we say that this predictor is “good” if
EPW

[(Y − µ̂(X ))2] is small

What if we want to improve on µ̂?



Bias and auto-calibration

Proposition 1

The following inequalities hold:

EPW
[(Y − µ̂(X ))2] ≥ EPW

[(Y − EPW
[Y | µ̂(X )])2] ≥ EPW

[(Y − µW (X ))2]

Note that

I the first inequality in the proposition is an equality iff

µ̂(X ) = EPW
[Y | µ̂(X )]

which corresponds to that µ̂(X ) is auto-calibrated, see (Krüger
& Ziegel 2021, Def. 3.1) and (Denuit et al. 2021, Sec. 5.1)

I if we believe µ̂(X ) is close to µW (X ) we do not expect much
improvement (we’ll come back to this in the examples)



Bias and auto-calibration

I Further, Prop. 1 tells us that

µ̂∗W (X ) := EPW
[Y | µ̂(X )]

is the natural candidate for an improved predictor

I This predictor is not attainable based on a finite sample
I Suggestion: Partition based on µ̂! That is,

I Since µ̂ ∈ R+, split R+ into κ bins (somehow) according to
b0 = 0 < b1 < . . . < bκ−1 < bκ = +∞

I Using µ̂ create a partition of the covariate space according to

Bk := {x ∈ X : µ̂(x) ∈ [bk−1, bk)}, X = ∪κk=1Bk

I Introduce the piecewise constant bias adjusted predictor

µ̂ba
W (X ) :=

κ∑
k=1

EPW
[Y | X ∈ Bk ]1{X∈Bk}

which is auto-calibrated, see Lindholm et al. (2023)



Bias and auto-calibration

The bias adjusted predictor to be used in practice is the following
plug-in predictor of the L2 minimiser

̂̂µbaW (x) :=
κ∑

k=1

ÊPW
[Y | X ∈ Bk ]1{X∈Bk}

=
κ∑

k=1

∑m
i=1 wiyi1Bk

(xi )∑m
i=1 wi1{X∈Bk}

1{x∈Bk}



Bias and auto-calibration

I How to choose the Bks (or rather the bks)?
I Suggestion: Minimise MSEP based on

I equal duration binning, i.e. sort (yi , µ̂(xi ),wi )i based on µ̂ and
split into equal duration bins

I a duration weighted L2-regression tree
I ...

Note:

I We let data decide on the effective number of bins (or tariff
cells) using MSEP

I This gives us a data driven automatic construction of tariffs



Numerical examples

We consider two sets of data:

I Simulated Poisson data

I CASdatasets: freMTPL

The simulated data set is made to resemble the freMTPL data, in
short:

I n = 300 000 policies, 80% used for training 20% used for
out-of-sample test

I E[Z ] = 0.05 = expected no. of claims for a single contract

I Var(µ(X )) ≈ 0.02



Simulated data



GLM raw, test GLM eq. dur. binning, test

The bins on the x-axis correspond to the risk ordering based on the
initial predictor µ̂; model prediction (thick red); initial std. dev of
Z (thin red); adjusted (magenta); Pois-Z ref. (green); truth (blue)



GBM raw, test GBM eq. dur. binning, test

The bins on the x-axis correspond to the risk ordering based on the
initial predictor µ̂; model prediction (thick red); initial std. dev of
Z (thin red); adjusted (magenta); Pois-Z ref. (green); truth (blue)



Simulated data

Conclusions

I A misspecified model can be corrected satisfactory

I A reasonably well specified model is not damaged

I Equal duration binning only use ∼ 100 bins



CASdatasets: freMTPL



Simulated data: No duration effects

Real data: Potential duration effects

Modelling assumption, initial predictor:

E[Z | X ,W ] and Var(Z | X ,W ) linear in W — “GLM”

Note: if this assumption is wrong, the plug-in estimator of
Var(Z | X ) will be systematically over-estimated!

See, Lemma 3.3 in Lindholm & Nazar (2023)



I If the GLM moment assumption is satisfied, the points should
be evenly scattered around 0

I Here, low duration seems to imply higher risk



GLM raw, test GLM eq. dur. binning, test

The bins on the x-axis correspond to the risk ordering based on the
initial predictor µ̂; model prediction (thick red); initial std. dev of
Z (thin red); adjusted (magenta); Pois-Z ref. (green)



GBM raw, test GBM eq. dur. binning, test

The bins on the x-axis correspond to the risk ordering based on the
initial predictor µ̂; model prediction (thick red); initial std. dev of
Z (thin red); adjusted (magenta); Pois-Z ref. (green)



CASdatasets: freMTPL

Conclusions

I A misspecified model can be corrected satisfactory

I Duration weights matter – GLM weights not entirely correct

I Bias regularising the variance makes the model very close to
Poisson

I Equal duration binning only use ∼ 100 bins



Summary and conclusions

I Bias adjust!

I The piecewise constant technique is simple!

I Data decides the size of the tariff!

I Duration weights matter!

For more on effects of violating GLM assumptions, see Lindholm &
Nazar (2023)



Thank you for your attention!
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Appendix



A bit more details and related methods

I Dispersion modelling = variance modelling

How to do this?
I “GLM” assumption – the variance of Z | X ,W is linear in W

(as in the numerical illustrations)

⇒ variance decomposition!
I estimate the functional form of E[W | X ], i.e.

ν̂ ∈ arg min
g

EPW
[((Z − Ê[W | X ]µ̂W (X ))2 − g(X ))2]



A bit more details and related methods

Size of the tariff!?

I The performance of the original predictor matters! If you use
an intercept only model, you cannot learn anything new

⇒ risk-ordering of the original predictor!

⇒ isotonic regression, see Wüthrich & Ziegel (2023), assumes
a correct risk-ordering of the original predictor

I Effects of variation in the data generating process!?

Result for isotonic regression (Wüthrich & Ziegel (2023)):
lowering the signal to noise ratio in the data generating
process will reduce the size of the resulting tariff

(This is believed to hold for the current method as well)


