Local bias adjustment, duration-weighted probabilities, and automatic construction of tariff cells

Mathias Lindholm

IDS, June, 2023

The presentation is based on the paper

"Local bias adjustment, duration-weighted probabilities, and automatic construction of tariff cells"

in Scandinavian Actuarial Journal (available online), written together with Filip Lindskog and Johan Palmquist

I will also refer to results from a recent SSRN pre-print on effects of violating GLM assumptions, written together with Taariq Nazar

Outline of the presentation

- Background to predictive non-life insurance pricing
- Bias, auto-calibration, and auto-tariffication
- Numerical examples

Remarks.

 Details about dispersion modelling have been omitted, although included in the numerical examples (see appendix)

Notation will at times be informal

- What is it that we observe?
- Data (Z, X, W), where
 - ▶ $Z \in \mathbb{R}_+$ is the response, e.g. no. of claims or claim cost

- $X \in \mathbb{X}$ is a covariate vector
- ▶ $W \in \mathbb{R}_+$ is a weight, e.g. duration

For the remainder of the presentation we will refer to \boldsymbol{W} as duration

In practice we are often interested in e.g.

- claim frequency
- average claim cost
- the pure premium = claim cost / duration

and we model variables of the type Y = Z/W

► In retrospect *W* is known, but when a premium is paid *W* is random

Costs and premium calculations?

- Let Z denote the claim cost
- The actuarially fair premium, $\pi(X)$, is defined by

$$\mathbb{E}[W\pi(X) \mid X] = \mathbb{E}[Z \mid X] \quad (= \mathbb{E}[WY \mid X])$$

 $\Leftrightarrow \mathsf{Expected} \text{ earned premium} = \mathsf{expected} \text{ claim cost}$ \blacktriangleright That is

$$\pi(X) := \frac{\mathbb{E}[Z \mid X]}{\mathbb{E}[W \mid X]} = \mathbb{E}\left[\underbrace{W}_{\mathbb{E}[W \mid X]}Y \mid X\right] =: \mathbb{E}_{\mathbb{P}_W}[Y \mid X],$$

=duration weights=: \mathbb{P}_W

and $\pi(X)$ is the <u>expected duration adjusted claim cost</u>

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

Next, note that if we define

$$\mu_{\mathbf{W}}(X) := \mathbb{E}_{\mathbb{P}_{\mathbf{W}}}[Y \mid X],$$

it holds that

$$\mu_{W}(X) \in rgmin_{g} \mathbb{E}_{\mathbb{P}_{W}}[(Y - g(X))^{2}],$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all g such that $\mathbb{E}[g(X)^2] < \infty$

• Thus, by using the rescaling \mathbb{P}_W we can optimise "as usual"

Remarks.

If we make the additional "GLM" assumption

$$\mathbb{E}[Z \mid X, W] = W\lambda(X),$$

it follows that

$$\mathbb{E}_{\mathbb{P}_{W}}[Y \mid X] = \mathbb{E}[Y \mid X],$$

see (Lindholm et al. 2023, Prop. 2.1)

 GLMs, or EDF models, can be treated analogously as above by replacing the L² unit deviance, see Lindholm et al. (2023)

- Assume that we have a predictor $\widehat{\mu}(X)$
- ▶ We will stay in L^2 and we say that this predictor is "good" if $\mathbb{E}_{\mathbb{P}_W}[(Y \hat{\mu}(X))^2]$ is small

What if we want to improve on $\hat{\mu}$?

Proposition 1

The following inequalities hold:

 $\mathbb{E}_{\mathbb{P}_W}[(Y - \widehat{\mu}(X))^2] \geq \mathbb{E}_{\mathbb{P}_W}[(Y - \mathbb{E}_{\mathbb{P}_W}[Y \mid \widehat{\mu}(X)])^2] \geq \mathbb{E}_{\mathbb{P}_W}[(Y - \mu_W(X))^2]$

Note that

the first inequality in the proposition is an equality iff

$$\widehat{\mu}(X) = \mathbb{E}_{\mathbb{P}_W}[Y \mid \widehat{\mu}(X)]$$

which corresponds to that $\hat{\mu}(X)$ is <u>auto-calibrated</u>, see (Krüger & Ziegel 2021, Def. 3.1) and (Denuit et al. 2021, Sec. 5.1)

▶ if we believe µ(X) is close to µ_W(X) we do not expect much improvement (we'll come back to this in the examples)

Further, Prop. 1 tells us that

$$\widehat{\mu}^*_W(X) := \mathbb{E}_{\mathbb{P}_W}[Y \mid \widehat{\mu}(X)]$$

is the natural candidate for an improved predictor

- This predictor is not attainable based on a finite sample
- Suggestion: Partition based on $\hat{\mu}$! That is,
 - Since $\widehat{\mu} \in \mathbb{R}_+$, split \mathbb{R}_+ into κ bins (somehow) according to $b_0 = 0 < b_1 < \ldots < b_{\kappa-1} < b_{\kappa} = +\infty$
 - \blacktriangleright Using $\widehat{\mu}$ create a partition of the covariate space according to

$$B_k := \{x \in \mathbb{X} : \widehat{\mu}(x) \in [b_{k-1}, b_k)\}, \quad \mathbb{X} = \cup_{k=1}^{\kappa} B_k$$

Introduce the piecewise constant bias adjusted predictor

$$\widehat{\mu}^{\mathsf{ba}}_W(X) := \; \sum_{k=1}^\kappa \mathbb{E}_{\mathbb{P}_W}[Y \mid X \in B_k] \mathbb{1}_{\{X \in B_k\}}$$

which is auto-calibrated, see Lindholm et al. (2023)

The bias adjusted predictor to be used in practice is the following plug-in predictor of the L^2 minimiser

$$\begin{split} \widehat{\widehat{\mu}_{W}^{\text{ba}}}(x) &:= \sum_{k=1}^{\kappa} \widehat{\mathbb{E}}_{\mathbb{P}_{W}}[Y \mid X \in B_{k}] \mathbb{1}_{\{X \in B_{k}\}} \\ &= \sum_{k=1}^{\kappa} \frac{\sum_{i=1}^{m} w_{i} y_{i} \mathbb{1}_{B_{k}}(x_{i})}{\sum_{i=1}^{m} w_{i} \mathbb{1}_{\{X \in B_{k}\}}} \mathbb{1}_{\{x \in B_{k}\}} \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ How to choose the *B_k*s (or rather the *b_k*s)?
- Suggestion: Minimise MSEP based on
 - equal duration binning, i.e. sort $(y_i, \hat{\mu}(x_i), w_i)_i$ based on $\hat{\mu}$ and split into equal duration bins
 - a duration weighted L^2 -regression tree
 - •

Note:

- We let data decide on the effective number of bins (or tariff cells) using MSEP
- This gives us a <u>data driven automatic construction of tariffs</u>

Numerical examples

We consider two sets of data:

- Simulated Poisson data
- CASdatasets: freMTPL

The simulated data set is made to resemble the freMTPL data, in short:

- n = 300 000 policies, 80% used for training 20% used for out-of-sample test
- $\mathbb{E}[Z] = 0.05 = \text{expected no. of claims for a single contract}$

• $Var(\mu(X)) \approx 0.02$

Simulated data

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The bins on the x-axis correspond to the risk ordering based on the initial predictor $\hat{\mu}$; model prediction (thick red); initial std. dev of Z (thin red); adjusted (magenta); Pois-Z ref. (green); truth (blue)

The bins on the x-axis correspond to the risk ordering based on the initial predictor $\hat{\mu}$; model prediction (thick red); initial std. dev of Z (thin red); adjusted (magenta); Pois-Z ref. (green); truth (blue)

Simulated data

Conclusions

- A misspecified model can be corrected satisfactory
- A reasonably well specified model is not damaged

- Equal duration binning only use \sim 100 bins

CASdatasets: freMTPL

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Simulated data: No duration effects

Real data: Potential duration effects

Modelling assumption, initial predictor:

 $\mathbb{E}[Z \mid X, W]$ and $Var(Z \mid X, W)$ linear in W — "GLM"

Note: if this assumption is wrong, the plug-in estimator of $Var(Z \mid X)$ will be systematically over-estimated!

See, Lemma 3.3 in Lindholm & Nazar (2023)

- If the GLM moment assumption is satisfied, the points should be evenly scattered around 0
- Here, low duration seems to imply higher risk

The bins on the x-axis correspond to the risk ordering based on the initial predictor $\hat{\mu}$; model prediction (thick red); initial std. dev of Z (thin red); adjusted (magenta); Pois-Z ref. (green)

The bins on the x-axis correspond to the risk ordering based on the initial predictor $\hat{\mu}$; model prediction (thick red); initial std. dev of Z (thin red); adjusted (magenta); Pois-Z ref. (green)

Conclusions

- A misspecified model can be corrected satisfactory
- Duration weights matter GLM weights not entirely correct
- Bias regularising the variance makes the model very close to Poisson

- Equal duration binning only use \sim 100 bins

Summary and conclusions

- Bias adjust!
- The piecewise constant technique is simple!
- Data decides the size of the tariff!
- Duration weights matter!

For more on effects of violating GLM assumptions, see Lindholm & Nazar (2023)

Thank you for your attention!

<□ > < @ > < E > < E > E のQ @

References I

- Denuit, M., Charpentier, A. & Trufin, J. (2021), 'Autocalibration and Tweedie-dominance for insurance pricing with machine learning', Insurance: Mathematics and Economics 101, 485–497.
- Krüger, F. & Ziegel, J. F. (2021), 'Generic conditions for forecast dominance', <u>Journal of Business & Economic Statistics</u> **39**(4), 972–983.
- Lindholm, M., Lindskog, F. & Palmquist, J. (2023), 'Local bias adjustment, duration-weighted probabilities, and automatic construction of tariff cells', <u>Scandinavian Actuarial Journal</u> (available online).
- Lindholm, M. & Nazar, T. (2023), 'On duration effects in non-life insurance pricing', Available at SSRN 4474908 .
- Wüthrich, M. V. & Ziegel, J. (2023), 'Isotonic recalibration under a low signal-to-noise ratio', <u>arXiv preprint arXiv:2301.02692</u>.

Appendix

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

A bit more details and related methods

Dispersion modelling = <u>variance</u> modelling

How to do this?

 "GLM" assumption – the variance of Z | X, W is linear in W (as in the numerical illustrations)

 \Rightarrow variance decomposition!

• estimate the functional form of $\mathbb{E}[W \mid X]$, i.e.

$$\widehat{
u}\in rgmin_{g}\mathbb{E}_{\mathbb{P}_{W}}[((Z-\widehat{\mathbb{E}}[W\mid X]\widehat{\mu}_{W}(X))^{2}-g(X))^{2}]$$

A bit more details and related methods

Size of the tariff!?

The performance of the original predictor matters! If you use an intercept only model, you cannot learn anything new

 \Rightarrow risk-ordering of the original predictor!

 \Rightarrow *isotonic regression*, see Wüthrich & Ziegel (2023), assumes a correct risk-ordering of the original predictor

 Effects of variation in the data generating process!?
 Result for isotonic regression (Wüthrich & Ziegel (2023)): lowering the signal to noise ratio in the data generating process will reduce the size of the resulting tariff

(This is believed to hold for the current method as well)