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The presentation is based on the paper

“Local bias adjustment, duration-weighted probabilities, and
automatic construction of tariff cells'

in Scandinavian Actuarial Journal (available online), written
together with Filip Lindskog and Johan Palmquist

I will also refer to results from a recent SSRN pre-print on effects
of violating GLM assumptions, written together with Taariq Nazar



Outline of the presentation

» Background to predictive non-life insurance pricing
» Bias, auto-calibration, and auto-tariffication

» Numerical examples

Remarks.

» Details about dispersion modelling have been omitted,
although included in the numerical examples (see appendix)

» Notation will at times be informal



Non-life insurance pricing

» What is it that we observe?
» Data (Z, X, W), where
» Z € R, is the response, e.g. no. of claims or claim cost

» X € X is a covariate vector
» W e Ry is a weight, e.g. duration

For the remainder of the presentation we will refer to W as
duration



Non-life insurance pricing

> In practice we are often interested in e.g.

» claim frequency
> average claim cost
» the pure premium = claim cost / duration

and we model variables of the type Y = Z/W

> In retrospect W is known, but when a premium is paid W is
random

» Costs and premium calculations?



Non-life insurance pricing

» Let Z denote the claim cost

» The actuarially fair premium, w(X), is defined by

E[Wn(X) | X]=E[Z | X] (=E[WY | X])

< Expected earned premium = expected claim cost

» That is
7(X) ::m: IE[VI‘/A/\X]Y|X =:Ep,[Y | X],
—_———

=duration weights=:Py,

and 7(X) is the expected duration adjusted claim cost




Non-life insurance pricing

» Next, note that if we define
pw(X) = Ep, [V | X],
it holds that

i (X) € arggmin]EpW[(Y —g(X))?],

for all g such that E[g(X)?] < oo
» Thus, by using the rescaling P\, we can optimise “as usual”



Non-life insurance pricing

Remarks.

> If we make the additional "GLM" assumption
E[Z | X, W] = WA(X),
it follows that
Ep, [Y [ X] = E[Y | X],
see (Lindholm et al. 2023, Prop. 2.1)

» GLMs, or EDF models, can be treated analogously as above
by replacing the L2 unit deviance, see Lindholm et al. (2023)



Bias and auto-calibration

» Assume that we have a predictor j1(X)

» We will stay in L2 and we say that this predictor is “good” if
Ep,, [(Y — 71(X))?] is small

What if we want to improve on [1?



Bias and auto-calibration

Proposition 1
The following inequalities hold:

Ep, [(Y = (X))?] = Ep,, [(Y = Ep, [Y | A(X)])?] = Ep,, [(Y — pw(X))]

Note that

> the first inequality in the proposition is an equality iff
u(X) = Ep,, [Y' | 5(X)]

which corresponds to that fi(X) is auto-calibrated, see (Kriiger
& Ziegel 2021, Def. 3.1) and (Denuit et al. 2021, Sec. 5.1)

» if we believe fi(X) is close to uw/(X) we do not expect much
improvement (we'll come back to this in the examples)



Bias and auto-calibration

» Further, Prop. 1 tells us that

fiw(X) = Ep,, [Y | fi(X)]

is the natural candidate for an improved predictor

» This predictor is not attainable based on a finite sample
» Suggestion: Partition based on ! That is,

» Since 1 € Ry, split R, into k bins (somehow) according to
bp=0< b1 <...< b1 < b, =400
» Using [i create a partition of the covariate space according to

By = {X eX: ﬁ(X) € [bk—17 bk)}, X = Uzlek

> Introduce the piecewise constant bias adjusted predictor

Aw(X) = > Ep,[Y | X € BilIixes,y
k=1

which is auto-calibrated, see Lindholm et al. (2023)




Bias and auto-calibration

The bias adjusted predictor to be used in practice is the following
plug-in predictor of the L2 minimiser

i3 (x) =Y Be, [V | X € Billixes,
k=1
_ i >oimy wiyilp, (x)

LixeBy}



Bias and auto-calibration

» How to choose the Bys (or rather the bys)?
» Suggestion: Minimise MSEP based on

» equal duration binning, i.e. sort (y;, fi(x;), w;); based on fi and
split into equal duration bins

» a duration weighted L2-regression tree

L

Note:

» We let data decide on the effective number of bins (or tariff
cells) using MSEP

» This gives us a data driven automatic construction of tariffs




Numerical examples

We consider two sets of data:

» Simulated Poisson data

» CASdatasets: freMTPL
The simulated data set is made to resemble the freMTPL data, in
short:

» n = 300 000 policies, 80% used for training 20% used for

out-of-sample test
» E[Z] = 0.05 = expected no. of claims for a single contract

» Var(u(X)) =~ 0.02



Simulated data



GLM raw, test GLM eq. dur. binning, test

obs

The bins on the x-axis correspond to the risk ordering based on the
initial predictor fi; model prediction (thick red); initial std. dev of
Z (thin red); adjusted (magenta); Pois-Z ref. (green); truth (blue)



GBM raw, test GBM eq. dur. binning, test

obs

[ 100 200 300 400 500 [ 100 200 300 400 500

The bins on the x-axis correspond to the risk ordering based on the
initial predictor fi; model prediction (thick red); initial std. dev of
Z (thin red); adjusted (magenta); Pois-Z ref. (green); truth (blue)



Simulated data

Conclusions
» A misspecified model can be corrected satisfactory
> A reasonably well specified model is not damaged

» Equal duration binning only use ~ 100 bins



CASdatasets: freMTPL



Simulated data: No duration effects
Real data: Potential duration effects

Modelling assumption, initial predictor:

E[Z | X, W] and Var(Z | X, W) linear in W — "GLM"

Note: if this assumption is wrong, the plug-in estimator of
Var(Z | X) will be systematically over-estimated!

See, Lemma 3.3 in Lindholm & Nazar (2023)



» If the GLM moment assumption is satisfied, the points should
be evenly scattered around 0

> Here, low duration seems to imply higher risk



GLM raw, test GLM eq. dur. binning, test

03

z-obs
z-obs

The bins on the x-axis correspond to the risk ordering based on the
initial predictor fi; model prediction (thick red); initial std. dev of
Z (thin red); adjusted (magenta); Pois-Z ref. (green)



GBM raw, test GBM eq. dur. binning, test

03

z-obs
z-obs

The bins on the x-axis correspond to the risk ordering based on the
initial predictor fi; model prediction (thick red); initial std. dev of
Z (thin red); adjusted (magenta); Pois-Z ref. (green)



CASdatasets: freMTPL

Conclusions
» A misspecified model can be corrected satisfactory
» Duration weights matter — GLM weights not entirely correct

> Bias regularising the variance makes the model very close to
Poisson

» Equal duration binning only use ~ 100 bins



Summary and conclusions

v

Bias adjust!

v

The piecewise constant technique is simple!
Data decides the size of the tariff!

v

» Duration weights matter!

For more on effects of violating GLM assumptions, see Lindholm &
Nazar (2023)



Thank you for your attention!
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Appendix



A bit more details and related methods

» Dispersion modelling = variance modelling

How to do this?

» “GLM" assumption — the variance of Z | X, W is linear in W
(as in the numerical illustrations)

= variance decomposition!
» estimate the functional form of E[W | X], i.e.

ve arggmin Ee, [((Z — E[W | X]aw(X))* - g(X))’]



A bit more details and related methods

Size of the tariff!?

» The performance of the original predictor matters! If you use
an intercept only model, you cannot learn anything new

= risk-ordering of the original predictor!

= isotonic regression, see Wiithrich & Ziegel (2023), assumes
a correct risk-ordering of the original predictor

» Effects of variation in the data generating process!?

Result for isotonic regression (Wiithrich & Ziegel (2023)):
lowering the signal to noise ratio in the data generating
process will reduce the size of the resulting tariff

(This is believed to hold for the current method as well)



