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Premium control problem for a mutual insurer

• Premium control problem in discrete time
• Non-life insurer

• Delays between accidents and payments
• Premium level affects whether the company attracts or

loses customers (feedback)

• Mutual insurer
• Aim: find a premium rule that generates a low, stable

premium, and a low probability of default

Lina Palmborg, Stockholm University June 16, 2023 2 / 11



Premium control problem for a mutual insurer

• Premium control problem in discrete time
• Non-life insurer

• Delays between accidents and payments
• Premium level affects whether the company attracts or

loses customers (feedback)

• Mutual insurer
• Aim: find a premium rule that generates a low, stable

premium, and a low probability of default

Lina Palmborg, Stockholm University June 16, 2023 2 / 11



Model of the insurance company

• Insurance economics give surplus fund dynamics

Gt+1 = Gt + EPt+1 + IEt+1 −OEt+1 − ICt+1 + RPt+1

• Earned premium: EPt+1 = (PtNt+1 + Pt−1Nt)/2

• Define the state St so that (St) is Markovian given the
premium rule (policy) π, e.g.

St = (Gt, Pt−1, Nt, . . .)

=⇒ Markov decision process (MDP)
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The control problem

minimise
π

Eπ
[ T∑
t=0

γtf(Pt, St, St+1) | S0 = s
]
,

where γ is a discount factor.

f(Pt, St, St+1) :=

{
c(Pt), if Gt+1 ≥ Gmin,

c(maxA)(1 + η), if Gt+1 < Gmin,

• c an increasing, strictly convex function =⇒ premiums
(Pt) will be averaged

• T := min{t : Gt+1 < Gmin} =⇒ termination (default)
• η > 0 =⇒ high cost in case of default

Lina Palmborg, Stockholm University June 16, 2023 4 / 11



The control problem

minimise
π

Eπ
[ T∑
t=0

γtf(Pt, St, St+1) | S0 = s
]
,

where γ is a discount factor.

f(Pt, St, St+1) :=

{
c(Pt), if Gt+1 ≥ Gmin,

c(maxA)(1 + η), if Gt+1 < Gmin,

• c an increasing, strictly convex function =⇒ premiums
(Pt) will be averaged

• T := min{t : Gt+1 < Gmin} =⇒ termination (default)
• η > 0 =⇒ high cost in case of default

Lina Palmborg, Stockholm University June 16, 2023 4 / 11



Solving the control problem

• Explicit transition probabilities not available in a realistic
setting
=⇒ cannot use dynamic programming
=⇒ need to use reinforcement learning (e.g. SARSA)

• State space too large in a realistic setting
=⇒ need to use function approximation

• SARSA learns from real or simulated experience
=⇒ need a lot of data!
=⇒ simulate data from a suitable stochastic environment
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SARSA with function approximation

• The action-value function

qπ(s, a) := Eπ
[ T∑
t=0

γt(−f(Pt, St, St+1)) | S0 = s, P0 = a
]

is approximated by a parameterised function q̂(s, a; θ)

• Given a behaviour policy π that generates actions we can
sample (St, At, Rt+1, St+1, At+1)

• Action At (here premium Pt)
• Reward Rt+1 (here −f(Pt, St, St+1))

• Iterative update for the weight vector
θt+1 = θt + αt+1

(
Rt+1 + γq̂(St+1, At+1; θt)− q̂(St, At; θt)

)
∇q̂(St, At; θt)
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Illustration - simple model

• Nt fixed, finite state space, state St = (Gt, Pt−1)

• =⇒ can be solved by dynamic programming

true optimal policy fraction of time in state
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Function approximation
Number of episodes: 10 (episode length = min{100, T})

true optimal policy
more flexible

approximate policy
less flexible

approximate policy

fraction of time in state fraction of time in state fraction of time in state
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Function approximation
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true optimal policy
more flexible

approximate policy
less flexible
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Function approximation
Number of episodes: 1000

true optimal policy
more flexible

approximate policy
less flexible

approximate policy

fraction of time in state fraction of time in state fraction of time in state
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Function approximation
Number of episodes: 10 000

true optimal policy
more flexible

approximate policy
less flexible

approximate policy

fraction of time in state fraction of time in state fraction of time in state
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Behaviour policy
• Needs to both explore and exploit

• ε-greedy policy: π(a|s) =

1− ε, if a = argmax
a

q̂(s, a; θ),

ε

|A| − 1
, otherwise.

• Softmax policy: π(a|s) =
exp{q̂(s, a; θ)/τ}∑

ā∈A exp{q̂(s, ā; θ)/τ}

true optimal policy
softmax behaviour policy

approximate policy
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Realistic model

• In more realistic settings, we derive approximate optimal
premium rules that outperform several benchmark policies

• For more details on this, and the full design of the
reinforcement learning algorithm, see
L. Palmborg, F. Lindskog (2023), Premium control with
reinforcement learning. ASTIN Bulletin. Open access
https://doi.org/10.1017/asb.2023.13
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