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Data (1/4)

Wisconsin Local Government Property Insurance Fund (LGPIF)

* The data consists of 6’030 records (4’991 in the training set, 1’039 in the test set) which include a claim amount, a short English claim
description and a hazard type with 9 different levels: Fire, Lightning, Hail, Wind, WaterW (weather related water claims), WaterNW (other
weather claims), Vehicle, Vandalism and Misc (any other).

* The following exhibit shows an example

row Vandalism Fire Lightning Wind Hail Vehicle WaterNW WaterW Misc Loss Description
1 0 0 1 0 0 0 0 0 0 6838.87 lightning damage
2 0 0 1 0 0 0 0 0 0 2085 lightning damage at Comm. Center
6 1 0 0 0 0 0 0 0 0 8775 surveillance equipment stolen
7 0 0 0 i (I 0 0 0 0 34610.27 wind blew stack off and damaged roof
9 0 0 0 0 0 1 0 0 0 9711.28 forklift hit building damaging wall and door frame
11 0 0 0 0 0 0 0 1 0 1942.67 water damage at courthouse
30 0 0 0 0 O 1 0 0 0 3469.79 light pole damaged

https://github.com/OpenActTexts/Loss-Data-Analytics/tree/master/Data



https://github.com/OpenActTexts/Loss-Data-Analytics/tree/master/Data

number of claims

Data (2/4)

Wisconsin Local Government Property Insurance Fund (LGPIF)

number of claims by peril type
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Data (3/4)

Wisconsin Local Government Property Insurance Fund (LGPIF)
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Data (4/4

Wisconsin Local Government Property Insurance Fund (LGPIF
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Framing the Business and Analytics Problem

* Business Problem: Classify the claims into the 8 categories based on the claims description.
* Analytics Problem: short property insurance claim description which we aim to classify by peril type.

\/Classify by peril type in a supervised setting

* To warm up, we apply supervised learning techniques you have learned in Part | to the dataset of this Part Il.

Y Zero-shot classification

* This technique assigns each text sample to one element of a pre-defined list of candidate expressions. This allows .
classification without any task-specific training and without using the labels. This fully unsupervised approach is useful in
situations with no labels.

v/ Unsupervised classification using similarity

* This technique encodes each input sentence and each candidate expression into en embedding vector. Then, pairwise
similarity scores between each input sequence and each candiate expression are calculated. The candidate expression with
the highest similarity score is selected. This fully unsupervised approach is useful in situations with no labels.

)( Unsupervised topic modeling by clustering of document embeddings

* This approach extracts clusters of similar text samples and proposes verbal representations of these clusters. The labels are

not required, but may be used in the process if available. Tﬁis technigue does not require prior knowledge of candidate
expressions.



Classify by peril type in a
supervised setting



High-level approach

Lightning lightning damage
Vandalism surveillance equipment stolen

Wind wind blew stack off and damaged roof

How to fit a supervised model, when the feature space are words?

=>» First idea: Encode the words with one-hot-encoding like categorical features. This results in a very high-dimensional,
sparse matrix X.

1 0 0 0 0

Lightning 1
Vandalism 0 0 0 1 1 1

Wind 0 1 0 0 0 0

12



High-level approach

How to fit a supervised model, when the feature space are words?

=» Second idea: Embed the sentences in a low-dimensional space, such that there is some logic when vectors are close to
each other

=» Transformers are models that do that embedding. And recently, it has been shown that those embedings are really good,
compared to older models some years ago.

=>» We do not go into details about transformers at this stage

surveillance lightning damage
equipment stolen

v

wind blew stack off
and damaged roof



Features

* x: 384 dimensional feature vector, all vectors of unit length

* Y: peril types (labels)

wind blew stack off

surveillance equipment
qauip and damaged roof

lightning damage
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Results

Dummy classifier Logistic Regression classifier

Vandalism i)

o
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Python Code

Using google Colab providing the infrastucture

Given the infrastructure,
just a few lines of code are
needed!

# load the model and the tokenizer
model name = "distilbert-base-uncased«
tokenizer = AutoTokenizer.from pretrained(model name)
device = torch.device("cuda" if torch.cuda.is available() else "cpu")
model = AutoModel.from pretrained(model name).to (device)
# define a function to tokenize a batch
def tokenize (batch):
return tokenizer (batch["Description"], truncation=True, padding=True, max length=12)
# apply the function to the whole dataset
ds = ds.map (tokenize, batched=True)
ds = ds.map (extract sequence encoding, fn kwargs={"model": model}, batched=True, batch size=16)
X train, y train, x test, y test = get xy(ds, "mean hidden state", "labels'")
# fit a logarithmic regression classifier to the encoded texts

clf = logistic regression classifier(x train, y train, c=0.2)

16



Unsupervised classification using
similarity



High-level approach

* Every claims description is translated into a 384-dimensional vector with unit length
e Cosine similarity, which is the dot product of two embedding vectors, each normalized to unit length

* The peril type with the highest score is selected.

lightning damage

Vandalism
Hail damage

v

Electricity

18



Results

Peril Type | Candidate expressions

Vandalism
Fire
Lightening
Wind

Hail
Vehicle
WaterNW
WaterW
Misc

Vandalism, Glass, Theft
Fire damage

Lightning damage

Wind damage

Hail damage

Damage cause by a vehicle
Water damage

Weather damage, Ice

Electricity, power surge

actual class

Similarity
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Fire
Lightning
Wind
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Waterw
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Conclusions



Conclusions

* Transformers
* Useful in situations of small data
e Useful in situations with no labels
* Transformer models are relatively new
e Results are good due to progress in the language models used
* Business problems which could not be solved 5 years ago are nowadays feasable
* Few lines of codes
 Computationally intensive. Platform with GPU support recommended.

e Tutorial available here, and corresponding Python notebooks here.

e www.actuarialdatascience.org

21
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Appendix



Transformers

* Neural network architecture developed by Google researchers in 2017.
» Uses word embeddings and self-attention layers to understand words in their context.
* Quickly became dominant for achieving state-of-the art results on many NLP tasks.

* BERT (Bidirectional Encoder Representations from Transformers) is a Transformer
encoder architecture, introduced in 2019

e Multilingual DistilBERT, derived from BERT: 134 million parameters, pre-trained on
Wikipedia in 104 different languages

* Multilingual alternatives: XLM, XLM-RoBERTs3, ...

* Easy-to use Python library and model hub provided by (%) Huggingface
(https://huggingface.co/)



https://huggingface.co/

References

e Actuarial Applications of Natural Language Processing Using Transformers: Case Studies for Using
Text Features in an Actuarial Context, A. Troxler, J. Schelldorfer, 2022, arXiv:2206.02014

» Statistical Foundations of Actuarial Learning and its Applications, M.V. Withrich and M. Merz,
2023, Springer Actuarial

* Frees, E.W. (2020). Loss data analytics. An open text authored by the Actuarial Community.
https://openacttexts.github.io/

e Tunstall, L., von Werra, L., Wolf, T. (2022). Natural language processing with transformers. O'Reilly
Media, Inc.

24


https://arxiv.org/abs/2206.02014
https://arxiv.org/abs/2206.02014
https://link.springer.com/book/10.1007/978-3-031-12409-9
https://openacttexts.github.io/
https://transformersbook.com/

Acknowledgements

People:

All members of the SAA working

rou

Dr. Andrea Ferrario
Dr. Tobias Fissler

Dr. Roger Hammerli
Mara Nagelin

Dr. Alexander Noll
Dr. Simon Renzmann
Ron Richman

Dr. Robert Salzmann

Insititutions:

e Swiss Association of Actuaries (SAA)

e RiskLab at ETH Zurich
e Mobilab for Analytics at ETH Zurich

Companies:

* Swiss Re

25


https://www.actuaries.ch/de/fach-arbeitsgruppen/fachgruppe-data-science/Leitung
https://www.actuaries.ch/de/fach-arbeitsgruppen/fachgruppe-data-science/Leitung
https://www.actuaries.ch/
https://risklab.ch/
http://www.mobiliarlab.ethz.ch/
https://www.swissre.com/

	Folie 1: Actuarial Applications of Natural Language Processing Using Transformers Case Studies for Using Text Features in an Actuarial Context
	Folie 2: Disclaimer
	Folie 3: Tutorial
	Folie 4: Table of Content
	Folie 5: Data
	Folie 6: Data (1/4) Wisconsin Local Government Property Insurance Fund (LGPIF)
	Folie 7: Data (2/4) Wisconsin Local Government Property Insurance Fund (LGPIF)
	Folie 8: Data (3/4) Wisconsin Local Government Property Insurance Fund (LGPIF)
	Folie 9: Data (4/4) Wisconsin Local Government Property Insurance Fund (LGPIF)
	Folie 10: Framing the Business and Analytics Problem
	Folie 11: Classify by peril type in a supervised setting
	Folie 12: High-level approach
	Folie 13: High-level approach
	Folie 14: Features
	Folie 15: Results
	Folie 16: Python Code Using google Colab providing the infrastucture
	Folie 17: Unsupervised classification using similarity
	Folie 18: High-level approach
	Folie 19: Results
	Folie 20: Conclusions
	Folie 21: Conclusions
	Folie 22: Appendix
	Folie 23: Transformers
	Folie 24: References
	Folie 25: Acknowledgements

