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Machine Learning Algorithms

Machine learning algorithms, which leverage data to make
predictions, are playing an increasingly significant role in our
everyday lives.

▶ Credit Scoring
▶ Customer Churn Prediction
▶ Healthcare Diagnosis
▶ Personalized Recommendations
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Fair Machine Learning
There is growing awareness of the potential biases that can be
present in machine learning algorithms due to biased or
unrepresentative training data.

These biases can result in discriminatory behavior towards certain
populations.
▶ Racial bias in predictive Policing
▶ Bias in loan approval
▶ Algorithmic hiring bias

Machine Learning Fairness in Insurance
▶ Potential biases may arise in underwriting, pricing, claims

processing, etc.
▶ Methodologies for discrimination free insurance pricing (Xin

and Huang, 2022; Lindholm et al., 2023).
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Fairness Metrics

The scientific literature on fairness in machine learning has indeed
emphasized two key aspects (Mehrabi et al., 2021):

1. measuring and assessing fairness,
2. mitigating unfairness when necessary.

A growing number of fairness definitions:
▶ observational vs. causality-based criteria,
▶ group vs. individual criteria.
▶ fairness is a multi-faceted concept,
▶ conflicts between different fairness definitions.
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Unfairness Mitigation

Unfairness mitigation methods in machine learning can be
categorized into three main approaches:
▶ Pre-processing approaches: modifying the training data before

it is fed into the learning algorithm.
▶ In-processing approaches: modify the learning algorithm to

incorporate fairness constraints.
▶ Post-processing approaches: modifying the output of a trained

model.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bayesian Approaches to Fair Machine Learning

Bayesian approaches to fair machine learning have been relatively
understudied and under-utilized. However, they offer several
benefits:
▶ incorporation of parameter uncertainty,
▶ quantification of uncertainty in fairness metrics,
▶ transparent decision-making.

Many fairness metrics or their relaxations can be represented as
convex constraints.

Bayesian inference with parameter constraints arises in various
contexts.
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Bayesian Inference with Fairness Constraints (Extension of
Sen et al. (2018))

We incorporate fairness metrics as fairness constraints into the
Bayesian inference.
▶ Let Θ be the parameter space with norm || · ||.
▶ Let Θ̃n ⊂ Θ be a closed and non-empty constraint set which

may depend on the data U (n) := (U1, . . . , Un).
▶ Define the projection operator TΘ̃n

: Θ → P(Θ̃n) :

TΘ̃n
(θ) = {θ̃ ∈ Θ̃n : ||θ − θ̃|| = dist(θ, Θ̃n)}, (1)

where
dist(θ, Θ̃n) = inf{||θ − θ̃|| : θ̃ ∈ Θ̃n}.

▶ TΘ̃n
(θ) is the set of best approximation points θ̃ ∈ Θ̃n for θ.
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Bayesian Inference with Fairness Constraints

▶ Suppose further the set Θ̃n is also convex. Then TΘ̃n
(θ)

exists and is unique for all θ ∈ Θ, and TΘ̃n
becomes a

measurable map from Θ to Θ̃n.
▶ Let ΠΘ be a prior distribution on (Θ, BΘ) that places positive

mass on Θ̃n, and Π(n)
Θ be the corresponding posterior

distribution.
▶ TΘ̃n

induces the measure Π̃(n)
Θ̃n

on (Θ̃n, BΘ̃n
) such that for any

B̃ ∈ BΘ̃n

Π̃(n)
Θ̃n

(B̃) = Π(n)
Θ

(
T −1

Θ̃n
B̃

)
, (2)

where T −1
Θ̃n

B̃ = {θ ∈ Θ : TΘ̃n
θ ∈ B̃}.

▶ Π(n)
Θ and Π̃(n)

Θ̃n
are referred to as the unconstrained posterior

and constrained posterior, respectively.
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Asymptotic concentration of constrained posterior
distributions

▶ Let Θ be a separate Hilbert space.
▶ let Θ̃n be a sequence of subsets of Θ that are non-empty,

closed, and convex under (Pθ0 - a.s.)
▶ Suppose dΘ is bi-Lipschitz with respect to (Θ, || · ||), i.e.,

there exists a constant c ≥ 1 such that
c−1||θ − θ′|| ≤ dΘ(θ, θ′) ≤ c||θ − θ′|| for all θ, θ′ ∈ Θ.

▶ Suppose the unconstrained posterior concentrates at θ0 ∈ Θ
with rate ϵn.

Then the constrained posteriors concentrate at the sequence
TΘ̃n

θ0, n = 1, 2, . . . with rate at least ϵn:

Π̃(n)
Θ̃n

{θ : dΘ(θ, TΘ̃n
θ0) > c2Mnϵn} → 0,

in P(n)
θ0

-probability for every Mn → ∞.
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Sampling from Π̃(n)
Θ̃n

Sampling from Π̃(n)
Θ̃n

is straightforward.
1. We ignore the constraint set Θ̃n and sample from the

unconstrained posterior, θ1, . . . , θm ∼ ΠΘ.
2. Apply the map TΘ̃n

to the sample θ1, . . . , θm to obtain
θ̃1, . . . , θ̃m.

It follows that θ̃1, . . . , θ̃m ∼ Π̃(n)
Θ̃n

.
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Gibbs Posterior (Bissiri et al., 2016; Syring and Martin,
2023)

Bayesian framework requires specifying a statistical
model/likelihood which has a number of potentially negative
consequences:
▶ Risk of model mis-specification,
▶ Complicated models with many nuisance parameters,
▶ Quantity of interest (e.g. a quantile) may be independent of a

statistical model.
Gibbs posterior replaces the log-likelihood function with the
empirical risk

Rn(θ) = 1
n

n∑
i=1

ℓθ(ui).

For example, in a regression setting, u = (x, y) and θ is a function,
ℓθ(u) = |y − θ(x)|.
Gibbs posterior (with learning rate ω > 0) is defined as

Π(n)
Θ ∝ e−ωnRn(θ)Π(θ).
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Constrained Gibbs Posterior

Given closed, non-empty, and convex sets Θ̃n, and a projection
map TΘ̃n

, constrained Gibbs posteriors Π̃Θ̃n
can be defined

analogously.

Sampling from the constrained Gibbs posterior Π̃Θ̃n
is also

analogous to sampling from the constrained posterior.

The constrained Gibbs posteriors can be shown to concentrate
around TΘ̃n

θ∗ as n → ∞ where θ∗ is the risk minimizer.
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Application: Adult (Census Income) Data Set

Classification task: predict whether the annual income of a person
exceeds 50,000 US dollars.
▶ 48,842 instances
▶ 15 features (6 numerical and 9 categorical)
▶ We focus on 4 features (age, capital gain, education number

of years, hours per week) for illustration purposes.

Constraint: bound the difference in false positive rates for males
and females.
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Application: Adult (Census Income) Data Set

We consider the loss function

1{Y ̸= ϕθ(X)},

where
ϕθ(X) = 1{θT X > 0}.

The corresponding empirical risk is

Rn(θ) = 1
n

n∑
i=1

1{yi ≠ ϕθ(xi)}.

The constraint set Θ̃n is defined by bounding the squared
difference between false positive rates for males and females above
by a constant c.
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Results (c = 0.01)

Figure: Top left: age, top right: capital gain, bottom left: education
number of years, bottom right: hours per week
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Results (c = 0.1)

Figure: Top left: age, top right: capital gain, bottom left: education
number of years, bottom right: hours per week
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