Cyclical Gradient Boosting Machines for multidimensional parameter estimation

Henning Zakrisson based on joint work with Łukasz Delong and Mathias Lindholm

Department of Mathematics Stockholm University

June 9, 2023

Disclaimer:

The following slides present a simplified version of the algorithm. The notation is not consistent with the paper and is only meant to give an intuition of the algorithm.

Gradient Boosting Machines

Henning Zakrisson

Cyclical Gradient Boosting

June 9, 2023 3 / 26

The goal is to find parameter function

$$\theta(x): \mathbb{R}^p \to \mathbb{R}$$

that minimizes some loss function

$$L((y_i, \theta(x_i))_{i=1}^n)$$

on the training data set

 $(y_i, x_i)_{i=1}^n$

Gradient Boosting Machines

Algorithm: Gradient Boosting Machine

- Initialize $\theta^{(0)}(x) \in \mathbb{R}$
- For $k = 1, \ldots, \kappa$
 - Calculate the point-wise negative derivatives

$$g_i = -rac{\partial L(y_i, \theta(x_i))}{\partial \theta(x_i)}\Big|_{\theta= heta^{(k-1)}}$$

• Fit a regression tree *h* to the gradients

$$\gamma^{(k)} = \arg\min_{\gamma} \sum_{i=1}^{n} (g_i - h(x_i; \gamma))^2$$

• Update parameter function

$$\theta^{(k)}(x) = \theta^{(k-1)}(x) + \epsilon \cdot h(x; \gamma^{(k)})$$

590

Gradient Boosting Machines are prone to overfitting.

To avoid this, we can use early stopping, i.e. adjust hyper-parameter $\kappa.$ Split data set into

- Training data set: $(y_i, x_i)_{i=1}^m$
- Validation data set: $(y_i, x_i)_{i=m+1}^n$

Run the algorithm for $k = 1, 2, \ldots$ and choose

$$\kappa = \operatorname*{arg\,min}_{k} L\left(\left(y_{i}, \theta^{(k)}(x_{i})\right)_{i=m+1}^{n}\right)$$

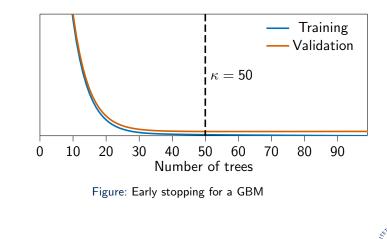
Sample $(y_i, x_i)_{i=1}^n$ from:

$$X_i \sim \mathcal{N}(0, I), \qquad Y_i \sim \mathcal{N}(\mu_i(x_i), \sigma^2)$$

with parameter function

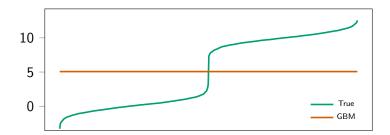
$$\mu_i(x_i) = x_{i1} + 10 \cdot \mathbb{1}_{\{x_{i2} > 0\}}, \qquad \sigma^2 = 1$$

Create training data set $(y_i, x_i)_{i=1}^{\frac{n}{2}}$ and validation data set $(y_i, x_i)_{i=\frac{n}{2}+1}^{n}$. Run GBM with early stopping, n = 10,000, $\epsilon = 0.1$.



Loss

500



 μ

Figure: Parameter estimates, $\kappa = 0$

500

Henning Zakrisson

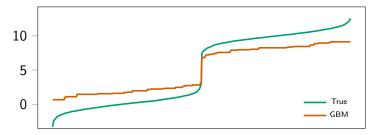


Figure: Parameter estimates, $\kappa = 10$

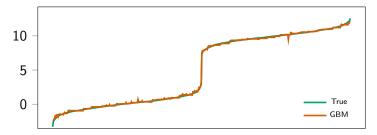


Figure: Parameter estimates, $\kappa = 50$

Cyclical Gradient Boosting Machines

Henning Zakrisson

Cyclical Gradient Boosting

June 9, 2023 12 / 26

The goal is to find parameter function

$$\theta(x): \mathbb{R}^p \to \mathbb{R}^d$$

for $d \ge 1$ that minimizes some loss function

 $L((y_i, \theta(x_i))_{i=1}^n)$

on the training data set

 $(y_i, x_i)_{i=1}^n$

Algorithm: Cyclical Gradient Boosting Machine

- Initialize $\theta^{(0)}(x) = \widehat{\theta}_{\mathsf{MLE}}$
- For $k = 1, \ldots, \kappa$
 - For j = 1, 2, ..., d
 - Calculate the point-wise negative partial derivatives

$$g_{ij} = - rac{\partial L(y_i, \theta(x_i))}{\partial \theta_j(x_i)} \Big|_{\theta = \theta^{(k-1)}}$$

• Fit a regression tree to the gradients

$$\gamma_j^{(k)} = rgmin_{\gamma} \sum_{i=1}^n (g_{ij} - h(x_i; \gamma))^2$$

• Update parameter function

$$heta_j^{(k)}(x) = heta_j^{(k-1)}(x) + \epsilon \cdot h(x; \gamma_j^{(k)})$$

Henning Zakrisson

June 9, 2023 14 / 26

- Using the univariate early stopping scheme can be problematic!
- The complexity of the parameter function can differ over the different dimensions.
- This might lead to dimension-wise over- or underfitting.

Strategy: individual stopping times for each dimension. For every boosting step k and every dimension j, calculate the loss contribution ΔL_{jk} . Then, choose

$$\kappa_j = rgmin_k \left\{ k : \Delta L_{jk} > 0
ight\}$$

Sample $(y_i, x_i)_{i=1}^n$ from:

$$X_i \sim \mathcal{N}(0, I), \qquad Y_i \sim \mathcal{N}(\mu_i(x_i), \sigma(x_i)^2)$$

with parameter function

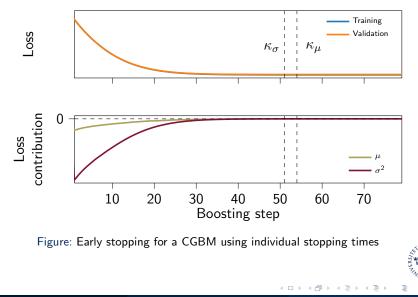
$$\mu_i(x_i) = x_{i1} + 10 \cdot \mathbb{1}_{\{x_{i2} > 0\}}$$

$$\log \sigma(x_i) = 3 - 2 \cdot \mathbb{1}_{\{x_{i1} > -0.2\}}$$
Create training data set $(y_i, x_i)_{i=1}^{\frac{n}{2}}$ and validation data set $(y_i, x_i)_{i=\frac{n}{2}+1}^{n}$.
Run CGBM with (individual) early stopping, $n = 100,000, \epsilon = 0.1$.

500

Create

Simulated example



500

Simulated example

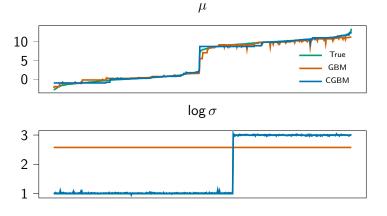


Figure: Parameter estimates

June 9, 2023 19 / 26

590

The freMTPL2 data set contains 678,013 observations of French motor third-party liability claims, of which 34,060 have at least one claim. The following covariates are available:

Feature	Description	Туре	
Brand	Brand of car	Categorical (7)	
Gas	Gas used by car	Categorical (2)	
Density	Population density in car-owners city	Continuous	
Area	Area of car	Categorical	
Region	Region of car	Categorical	
BonusMalus	Bonus/Malus level of driver	Continuous	
Power	Power level of car	Ordinal (12)	
Vehicle age	Age of the car in years	Continuous	
Driver age	Age of driver in years	Continuous	

Table: Features used in the real data example.

Real data example

Assume

$$N_i | X_i \sim \mathsf{NegBin}(w_i \mu(X_i), w_i \theta(X_i))$$

 $Y_i | X_i, N_i \sim \mathsf{Gamma}(N_i m(X_i), \phi(X_i)/N_i)$

where, for contract i,

- N_i is the number of claims
- w_i is the duration of the contract
- Y_i is the total claim amount
- X_i is the vector of covariates

using a mean-dispersion parametrization for the both distribution such that

$$\mathbb{E}[N_i|X_i] = w_i \mu(X_i), \qquad \qquad \forall \operatorname{ar}[N_i|X_i] = w_i \mu(X_i) \left(1 + \frac{\mu(X_i)}{\theta(X_i)}\right)$$
$$\mathbb{E}[Y_i|N_i, X_i] = N_i m(X_i), \qquad \qquad \forall \operatorname{ar}[Y_i|N_i, X_i] = N_i m(X_i)^2 \phi(X_i)$$

The CGBM produces a slightly lower loss for both data sets.

		Intercept	GBM	CGBM
Claim counts	Train	0.21	0.20	0.20
Claim counts	Test	0.24	0.24	0.20
Claim amounts	Train	1.25	1.25	1.20
	Test	1.24	1.24	1.20

Table: Average negative log-likelihood for the freMTPL2 data set.

Real data example

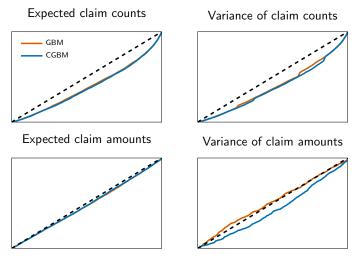


Figure: Concentration curves for the freMTPL2 data set.

Henning Zakrisson

Cyclical Gradient Boosting

June 9, 2023 23 / 26

- Cyclical Gradient Boosting extends Gradient Boosting to the multi-parametric setting.
- A hyperparameter tuning procedure is proposed.
- The algorithm can easily be extended to similar algorithms such as XGBoost.

- J. H. Friedman, *Greedy function approximation: a gradient boosting machine, Annals of statistics, pp. 1189–1232, 2001.*
- Ł. Delong, M. Lindholm, and H. Zakrisson, A Note on Multi-Parametric Gradient Boosting Machines with Non-Life Insurance Applications, Available at SSRN, 2023.

Thank you for your attention! Questions?

500

Henning Zakrisson

Cyclical Gradient Boosting