A bivariate mixed Poisson claim count regression model with varying dispersion and shape

Insurance Data Science Conference, City University of London 16/06/2023

Joint work of George Tzougas¹ and Despoina Makariou² ¹Department of Actuarial Mathematics and Statistics, Heriot-Watt University ²Institute of Insurance Economics, University of St. Gallen

Outline

- 1. Introduction
- 2. Motivation
- 3. Methodology
- 4. Contributions
- 5. Numerical illustration
- 6. Research extensions

Introduction

- Underwriting of several insurance lines
- Dependence structures for claim counts and size
- Multivariate data in actuarial practice

Motivation

- Focus on non-life insurance
- Model various types of claims counts
- Capture dependence structures
- Account for overdispersion and correlation
- Flexibility

Methodology

- Develop a MVPGIG regression model with varying dispersion and shape
- Flexible general class of models
- Mixture of independent Poisson distributions
- Single random effect variable distributed according to GIG
- MVPGIG parameters are modelled in terms of covariates
- Focus on the bivariate case

Model framework and assumptions

- Non-life insurance policy
- Insured *j*, where j = 1, ..., n
- Multi-peril claim frequencies $\mathcal{K}_{i,j}$, for i = 1, ..., m types of coverage
- Assume that given the random variables $Z_j > 0$, $\mathcal{K}_{i,j} = k_{i,j}|Z_j$ per claim type *i* are distributed according to a Poisson distribution with probability mass function (pmf) given by

$$\mathbb{P}\left(\mathcal{K}_{i,j} = \mathbf{k}_{i,j} | \mathbf{z}_j\right) = \frac{\exp[-\mu_{i,j} \mathbf{z}_j] (\mu_{i,j} \mathbf{z}_j)^{\mathbf{k}_{i,j}}}{\mathbf{k}_{i,j}!},$$

for $\mathbf{k}_{i,j} = 0, 1, 2, 3, \dots$, where $\mu_{i,j} > 0$, with mean and variance $\mathbb{E}(\mathcal{K}_{i,j}|Z_j = z_j) = \mu_{i,j}z_j$ and $\operatorname{Var}(\mathcal{K}_{i,j}|Z_j = z_j) = \mu_{i,j}z_j$.

Model framework and assumptions (continued)

• Z_j are random variables from a GIG distribution with probability density function (pdf) given by

$$g(\mathbf{Z}_{j};\sigma_{j},\nu_{j}) = \frac{C_{j}^{\nu_{j}}}{2K_{\nu_{j}}\left(\frac{1}{\sigma_{j}}\right)} \mathbf{Z}_{j}^{\nu_{j}-1} \exp\left[-\frac{1}{2\sigma_{j}}(C_{j}\mathbf{Z}_{j}+\frac{1}{C_{j}\mathbf{Z}_{j}})\right],$$

for $\sigma_j > 0$ and $-\infty <
u_j < \infty$, where

 $c_j = \frac{\kappa_{\nu_j+1}(\sigma_j^{-1})}{\kappa_{\nu_j}(\sigma_j^{-1})}$ and $\kappa_{\nu_j}(\omega)$ is the modified Bessel function of the third kind of order ν_j and argument ω . This parameterization ensures that the model is identifiable since $\mathbb{E}(Z_j) = 1$.

Here, $\mu_{i,j}$ and $\sigma_j \rightarrow \text{observable}$ risk characteristics and $z_j \rightarrow \text{non-observable}$ risk characteristics

The unconditional distribution of $\mathcal{K}_{i,j}$ will be a MVPGIG distribution with joint probability mass function (jpmf) given by

$$\mathbb{P}(\mathcal{K}_{i,j} = \mathbf{k}_{i,j}) = \frac{\prod_{i=1}^{m} \mu_{i,j}^{\mathbf{k}_{i,j}}}{\prod_{i=1}^{m} \mathbf{k}_{i,j}!} \frac{C_j^{\nu_j}}{2K_{\nu_j}(\frac{1}{\sigma_j})} \left[(2\sum_{i=1}^{m} \mu_{i,j} + \frac{C_j}{\sigma_j}) C\sigma_j \right]^{-\frac{\sum_{i=1}^{m} \mathbf{k}_{i,j} + \nu_j}{2}}$$

$$2K_{\sum_{i=1}^{m}k_{i,j}+\nu_{j}}\left[\sqrt{\frac{1}{c\sigma_{j}}\left(2\sum_{i=1}^{m}\mu_{i,j}+\frac{c}{\sigma_{j}}\right)}\right].$$

- Consider the bivariate (m=2) case of MVPGIG
- Assume that the mean, dispersion and shape parameters of the BPGIG are modelled as functions of explanatory variables with parametric linear functional forms
 - $\mu_{1,j} = \exp(X_{1,j}{}^{T}\beta_{1}), \qquad \sigma_{j} = \exp(X_{3,j}{}^{T}\beta_{3}),$ $\mu_{2,j} = \exp(X_{2,j}{}^{T}\beta_{2}), \qquad \nu_{j} = X_{4,j}{}^{T}\beta_{4}.$
- The covariance between $\mathcal{K}_{1,j}$ and $\mathcal{K}_{2,j}$ is given by

$$Cov(\mathcal{K}_{1,j},\mathcal{K}_{2,j}) = \mu_{1,j}\mu_{2,j}\left(c_j^{-2} + \frac{2(\nu_j+1)}{c_j}\sigma_j - 1\right).$$

Contributions

- Risk factors into the mean, dispersion, and shape parameters
- All MVPGIG parameters are modelled in terms of covariates \rightarrow very flexible and versatile family of models
- Modelling of the positive correlation between the two claims types in a stylised manner
- Novel Expectation Maximization algorithm for maximum likelihood estimation of the model parameters \rightarrow additional complexities

Numerical illustration

- Sample of MTPL claim frequency data
- Modelling of bodily injury and property damage claims with their associated claim counts using the BPGIG
- Comparison with BNB, BPIG based on Global Deviance, AIC and SBC
- Calculation of the A Posteriori Premiums

Variables	Categories		
	C1	C2	C3
City population	\leq 1,000,000	1,000,001-2,000,000	\geq 2,000,001
Number of years that the policyholder			
has been registered with the	< 5 years	> 5 years	-
insurance company			
Horsepower of the vehicle	0-1400 cc	1400-1800 cc	\geq 1800 cc

Descriptive statistics for the two responses

<i>K</i> ₁		K ₂		
statistic	value	statistic	value	
Minimum	0	Minimum	0	
Median	0	Median	0	
Mean	0.0954	Mean	0.0618	
Variance	0.1375	Variance	0.0644	
Maximum	4	Maximum	3	
Kendall's $ au$: 0.1760				
Spearman's <i>ρ</i> : 0.1777				

Model	df	Global Deviance	AIC	SBC
BNB	18	4388	4424	4542
BPIG	18	4249	4285	4403
BPGIG	19	4223	4261	4386

- Split the data into training and test data at the ratio of 9:1.
- 4149 data points for training and 1037 data points for testing.
- The BPGIG model outperforms the two competing bivariate mixed Poisson models.

Model	Deviance
BNB	490.80
BPIG	475.25
BPGIG	472.35

Research extensions

- Claim size instead of claim count
- $\cdot\,$ Two random effects variables instead of one
 - \rightarrow Insurance bundling
 - \rightarrow Relax assumption of positive correlation
- Deep neural networks and hybrid models

Thank you!