

Unsupervised Learning applied to the Customer Lifetime Value (CLV)

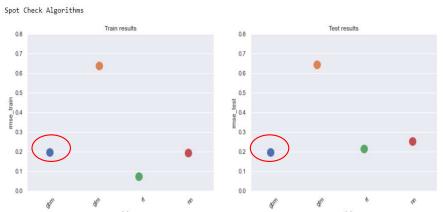
SPREAD PREDICTIVE ANALYTICS TOWARDS INSURANCE MARKETING FIELD

Acquisition phase Customer retention phase Customer is won back

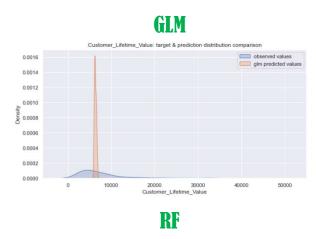
Customer is lost

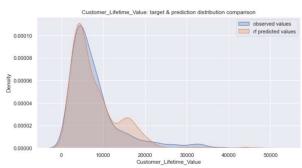
A key tool: Customer Lifetime Value. It's the value of a customer for a Company over the span of their lifetime relationship

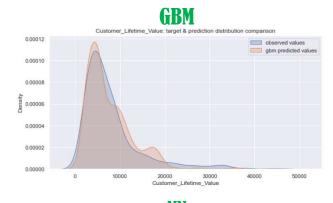
Github repository: https://github.com/claudio1975/Customer_Lifetime_Value

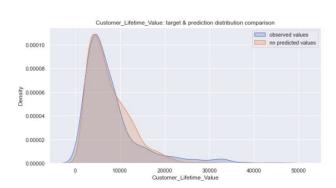

Insurance Data Science

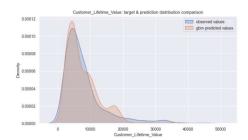
Which model can I use to predict CLY?


USE CASE: AUTOINSURANCE DATA SET

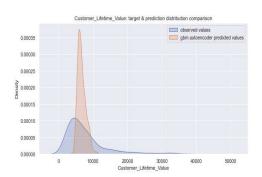

-Generalized Linear Model (GLM); -Random Forest (RF); -Gradient Boosting Machine (GBM); -Neural Networks (NN)






Insurance

Data

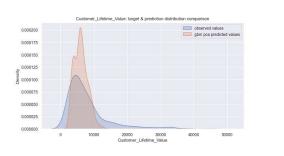

Science

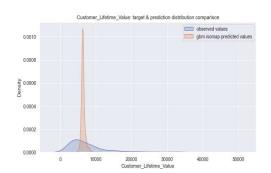
model	rmse_train	rmse_test
gbm_flat	0.196001	0.197300
gbm_pca	0.484353	0.564168
gbm_autoencoder	0.591485	0.627873
gbm isomap	0.624898	0.665873

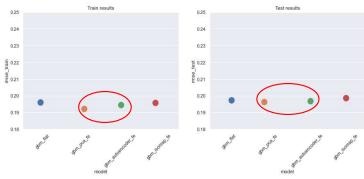
Flat (Baseline)

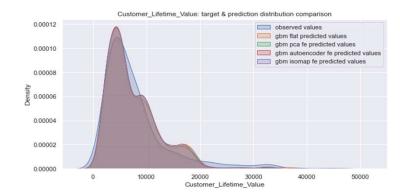
Autoencoder

Dimensionality reduction as feature engineering


CLV prediction using features from dimensionality reduction tools: worst performences compared with flat (baseline) model

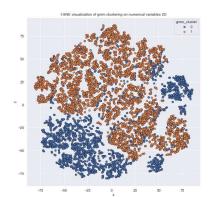

Data augmentation of flat (baseline) model with features extracted by dimensionality reduction tools: improved performences with PCA and Autoencoder



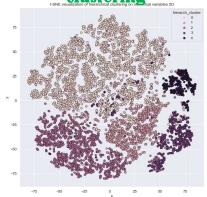

features Spot Check Algorithms

Isomap

Insurance


Data

Science


Clustering as portfolio analysis

Improve portfolio analysis by the combination of t-SNE and Clustering tools on numerical features

t-SNE with GMM

t-SNE with Hierarchical Clustering

t-SNE with K-Means

Visualization as helpful tool driving porftolio queries

From silhouette score comparison of clustering tools, K-Means seems to be more suitable

K-Means cluster analysis shows «O» cluster as region with greater density and with greater percentage both of Claim Amount and Monthly Car Premium (around 50%)

kmeans_cluster	Monthly_Premium_Auto	PERCENTAGE
0	454,824.00	53.42
2	187,154.00	21.98
3	141,777.00	16.65
1	67,710.00	7.95

kmeans_cluster	Total_Claim_Amount	PERCENTAGE
0	1,891,867.85	47.71
2	1,151,870.66	29.05
3	621,495.02	15.67
1	299,733.52	7.56
4 1		

	labels	silhouette_score
kmeans	4	0.175795
dbscan	3	0.127336
gmm	2	0.138758
hierarchical_clustering	5	0.159866