Deepening Lee-Carter for longevity projections with uncertainty estimation

Mario Marino¹, Susanna Levantesi, Andrea Nigri

¹ Department of Statistics, Sapienza University of Rome m.marino@uniroma1.it

3rd Insurance Data Science Conference

18 June 2021

Introduction

▶ Improving the Lee-Carter mortality density forecast

Agenda

Introduction

▶ Improving the Lee-Carter mortality density forecast

Mortality forecasting and Neural Networks

- Predicting mortality continues to be a challenge for demographers and actuaries
- Nowadays, several stochastic mortality models are avalaible
 - Lee-Carter (LC) family
 - Cairns-Blake-Dowd (CBD) family
- Methodological advances in mortality forecasting based on Machine and Deep Learning models
 - Random forest, Gradient Boosting
 - Feed-forward, Convolutional, Recurrent Neural Networks (NN)
- Exploting NN models as predictors, the idea is to create a novel approach: the Mortality Neural Forecasting

Mortality forecasting and Neural Networks

- The present work follows and completes the study in Nigri et al. (2019)
- The approach is the following:
 - A. Consider a stochastic mortality model as reference model to fit the observed mortality surface
 - B. Forecast future mortality paths by a proper NN model
- The overall mortality model is hybrid, achieving:
 - 1. Ease of interpretation of age-period-cohort parameters
 - 2. Accuracy in estimating future mortality outcomes

Model proposal: the LC-LSTM

The LC model as reference model and the LSTM network to improve the LC mortality density forecast

► Introduction

▶ Improving the Lee-Carter mortality density forecast

The LC-LSTM model - Formulation

► Reference model: LC Poisson model (Brouhns et al.(2002)). For $x \in \mathcal{X} = \{0, 1, ..., \omega\}$ and $t \in \mathcal{T} = \{t_0, t_1, ..., t_n\}$, we have $D_{x,t} \sim Poi(E_{x,t}^c m_{x,t})$ and

$$\ln m_{x,t} = \alpha_x + \beta_x k_t. \tag{1}$$

▶ Let $\kappa_{\mathcal{T}} = (k_{t-j})_{t \in \mathcal{T}}$ be the vector of the time lagged k_t , being $j \in \mathbb{N}$ the time lag, we consider:

$$k_t = f_{LSTM} \left(\kappa_{\mathcal{T}}; \mathcal{W} \right) + \gamma_t, \qquad (2)$$

with $f_{LSTM}: \mathbb{R}^{j} \to \mathbb{R}$ the LSTM function and \mathcal{W} the weights.

▶ Over the forecasting horizon $\mathcal{T}' = \{t_n + 1, t_n + 2, ..., t_n + s\}$, the LC-LSTM model expression is:

$$\ln m_{x,t} = \hat{\alpha}_x + \hat{\beta}_x \left(f_{LSTM} \left(\kappa_{\mathcal{T}'}; \mathcal{W} \right) + \gamma_t \right), \quad \forall t \in \mathcal{T}', \quad (3)$$

with $\hat{\alpha}_x$ and $\hat{\beta}_x$ the estimates of age-dependent parameters.

The LC-LSTM model - Point Predictions

• From a general perspective, the LC time-index values should be interpreted as the realization of the following process:

$$k_{t} = \varphi(\kappa_{\mathcal{T}}) + \gamma_{t}, \quad \forall t \in \mathcal{T},$$
(4)

where the unknown function $\varphi : \mathbb{R}^j \to \mathbb{R}$ maps the vector κ_T to k_t over the time horizon \mathcal{T} , unless the noise component.

• The network approximates $\varphi(\kappa_T)$ according to the time-index history:

$$\hat{k}_{t} = \hat{f}_{LSTM}\left(\kappa_{\mathcal{T}}; \hat{\mathcal{W}}\right) = \mathbb{E}\left(k_{t} | \kappa_{\mathcal{T}}\right)$$
(5)

• Therefore, the LC-LSTM model provides the following point predictions:

$$\ln \hat{m}_{x,t} = \mathbb{E} \left(\ln m_{x,t} \right) = \hat{\alpha}_x + \hat{\beta}_x \hat{f}_{LSTM} \left(\kappa_{\mathcal{T}'}; \hat{\mathcal{W}} \right), \quad \forall t \in \mathcal{T}'.$$
(6)

The LC-LSTM model - Uncertainty estimation

- Point predictions could be a poor information and a measure of uncertainty, such as prediction intervals, is necessary
- Exploting the bias-variance trade-off principle, the total variance associated to time-index values is:

$$\sigma_{k_t}^2 = \sigma_{\hat{k}_t}^2 + \sigma_{\gamma}^2 + \mathbb{E}\left[BIAS\left(\hat{k}_t | \boldsymbol{\kappa}_{\mathcal{T}'}\right)^2\right]$$
(7)

where $\sigma_{\hat{k}_t}^2$ is the NN output variance, σ_{γ}^2 is the noise variance and $BIAS\left(\hat{k}_t | \kappa_{\mathcal{T}'}\right) = \mathbb{E}\left(\varphi\left(\kappa_{\mathcal{T}'}\right) - \hat{k}_t | \kappa_{\mathcal{T}'}\right)$.

The LC-LSTM - estimating $\sigma^2_{\hat{k}_{\star}}$

- To derive $\sigma_{\hat{k}_t}^2$ the conditioned time-index distribution, $\mathbb{P}\left(\hat{k}_t | \kappa_{T'}\right)$ should be known, but it is not available.
- We could extract it from the data referring to the ensemble technique
- Using bootstrap techniques, multiple training data samples are generated to develop an empirical distribution, $\hat{\mathbb{P}}\left(\hat{k}_t | \kappa_{T'}\right)$
- The final estimates are then obtained aggregating, by average, the various outputs: bootstrap aggregating or bagging

• In bagging procedures holds that
$$\mathbb{E}\left[BIAS\left(\hat{k}_t | \boldsymbol{\kappa}_{\mathcal{T}'}\right)^2\right] \to 0$$

The LC-LSTM - estimating $\sigma_{\hat{k}_{\star}}^2$

The bagging scheme:

- Step 1. Over the series $\kappa_{\mathcal{T}}$, we train the LSTM model obtaining point estimates over \mathcal{T}'
- Step 2. Generate $B \in \mathbb{N}$ samples of $\kappa_{\mathcal{T}}$ via a proper bootstrap procedure
- Step 3. For each sample re-optimize the weights of NN defined in Step 1
- Step 4. For each NN in Step 3, predict the associate point estimate on \mathcal{T}' , producing a bootstrap distribution consisting of B point predictions:

$$\hat{\mathbb{P}}\left(\hat{k}_{t} | \boldsymbol{\kappa}_{\mathcal{T}'}\right) = \left(\hat{k}_{t}^{(b)} = \hat{f}_{LSTM}\left(\boldsymbol{\kappa}_{\mathcal{T}}^{(b)}, \hat{\boldsymbol{\mathcal{W}}}^{(b)}\right), b = 1, \dots, B\right)$$
(8)

The LC-LSTM - estimating $\sigma_{\hat{k}_{\star}}^2$

Step 5. From $\hat{\mathbb{P}}\left(\hat{k}_t | \kappa_{\mathcal{T}'}\right)$ calculates estimates of interest by aggregation. Hence, the bagged estimate of the variance $\sigma_{\hat{k}_t}^2$ is:

$$\hat{\sigma}_{\hat{k}_t}^2 = \frac{1}{B-1} \sum_{b=1}^{B} \left(\hat{f}_{LSTM} \left(\kappa_{\mathcal{T}}^{(b)}, \hat{\mathcal{W}}^{(b)} \right) - \overline{k}_t \right), \qquad (9)$$

where

$$\overline{k}_{t} = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{LSTM} \left(\kappa_{\mathcal{T}}^{(b)}, \hat{\boldsymbol{\mathcal{W}}}^{(b)} \right)$$

is the bagged estimate for the conditional expectation $\mathbb{E}\left(\hat{k}_t | \kappa_{\mathcal{T}'}\right)$.

The LC-LSTM - estimating σ_{γ}^2

- Mortality dynamic incorporates an intrinsic randomness not explained by the network: the noise γ
- A NN appropriately trained catches the key input-output data schemes, skimming noisy examples (avoid overfitting)
- $\bullet\,$ Let ${\mathcal T}$ be the training set interval, we deal with the series

$$(\gamma_t)_{t\in\mathcal{T}} = \left(k_t - \hat{k}_t\right)_{t\in\mathcal{T}}$$

as a proxy of the unwrapped noise by NN

It helps to evaluate the estimates
 ²
 ^γ
 as the time-index
 residual uncertainty over
 T, spreading the random error over
 the forecast horizon
 T' through a random walk representation

► Introduction

▶ Improving the Lee-Carter mortality density forecast

- Countries: Australia, Spain and Japan. Data from HMD, both genders
- Ages: $\mathcal{X} = \{0, \dots, 99\}$
- Calendar Years: Two periods to check model robustness $\mathcal{T}=\{1950,\ldots,2018\}$ and $\mathcal{T}=\{1960,\ldots,2018\}$

• Lag
$$J = 1$$
, so that $\kappa_{\mathcal{T}} = (k_{t-1})_{t \in \mathcal{T}}$ and
 $k_t = f_{LSTM}(k_{t-1}; \mathcal{W}) + \gamma_t$

- For the bagging scheme: bootstrap from Koissi et al.(2006), with B = 1000
- Benchmark: LC Poisson model (Brounhs et al.(2002)), selecting the best ARIMA(p,d,q) model.

Numerical application - Learning process

• Setting T = 2000 as forecasting year, the series κ_T is splitted in:

TRAINING SET:
$$\mathcal{TR} = (k_t | k_{t-1})_{t=t_0,...,T}$$

TESTING SET: $\mathcal{TS} = (k_t | k_{t-1})_{t=T+1,...,t_n}$, (10)

where $t_0 = \{1950, 1960\}$.

To validate the model we divide the *TR* set into a sub-training set and in a validation set, considering the splitting rule 80% - 20%:

SUB-TRAINING SET: $T\mathcal{R}^{sub} = (k_t | k_{t-1})_{t=t_0,...,T^{sub}}$ (11) VALIDATION SET: $VS = (k_t | k_{t-1})_{t=T^{sub}+1,...,T}$

• Tuning by grid search

Numerical application - Performance metrics

• Accuracy metrics for point predictions, with $\hat{y} = \{\hat{k}; \ln \hat{m}\}$

$$RMSE_{(y)} = \sqrt{rac{\sum_{t=t_n+1}^{t_n+s} (y_t - \hat{y}_t)^2}{s-1}}$$

• Quality metrics for prediction interval, with $\hat{y} = \{\hat{k}; \ln \hat{m}\}$

Prediction Interval Coverage Probability

$$PICP_{(y)} = \frac{1}{s-1} \sum_{t=t_n+1}^{t_n+s} \mathbf{1}_{\{\hat{y}_t \in [\hat{y}_t^L, \hat{y}_t^U]\}},$$

Mean Prediction Interval Width

$$MPIW_{(y)} = rac{1}{s-1} \sum_{t=t_n+1}^{t_n+s} \hat{y}_t^U - \hat{y}_t^L.$$

with $\mathbf{1}_{\{\cdot\}} = 1$ if $\hat{y} \in [y^L, y^U]$, and $\mathbf{1}_{\{\cdot\}} = 0$ otherwise.

• k_t performance metrics for each training period. Forecasting years: 2001-2018.

Country	Model	Training period 1950-2000							Training period 1960-2000						
		Male			Female			Male			Female				
		RMSE	$PICP_{(k)}$	$MPIW_{(k)}$	RMSE	$PICP_{(k)}$	$MPIW_{(k)}$	RMSE	$PICP_{(k)}$	$MPIW_{(k)}$	RMSE	$PICP_{(k)}$	$MPIW_{(k)}$		
Australia	ARIMA	9.514	1	53.503	3.861	1	25.195	5.138	1	47.485	3.637	1	25.089		
	LSTM	4.280	1	32.865	3.790	1	39.478	1.970	1	28.143	2.659	1	37.433		
Japan	ARIMA	3.743	1	21.503	10.084	0.556	20.767	4.647	1	17.392	9.790	0.500	12.409		
	LSTM	2.228	1	43.784	18.014	1	53.431	2.069	1	28.209	5.818	1	30.701		
Spain	ARIMA	14.038	0.333	19.354	6.215	1	21.394	13.071	0.333	17.343	5.805	1	20.747		
	LSTM	8.625	1	35.424	7.471	1	60.373	9.983	0.778	23.340	4.357	1	28.141		

• $\ln m_{x,t}$ performance metrics for each training period. Forecasting years: 2001-2018.

Country	Model	Training period 1950-2000							Training period 1960-2000						
		Male			Female			Male			Female				
		RMSE(m)	$PICP_{(m)}$	$MPIW_{(m)}$	RMSE(m)	$PICP_{(m)}$	$MPIW_{(m)}$	RMSE(m)	$PICP_{(m)}$	$MPIW_{(m)}$	$RMSE_{(m)}$	$PICP_{(m)}$	$MPIW_{(m)}$		
Australia	LC	0.227	1	0.534	0.091	0.944	0.267	0.175	1	0.478	0.084	0.944	0.265		
	LC-LSTM	0.110	0.944	0.295	0.142	0.944	0.407	0.116	0.944	0.280	0.097	1	0.394		
Japan	LC	0.071	0.667	0.180	0.255	0	0.173	0.063	0.722	0.150	0.155	0.056	0.105		
	LC-LSTM	0.062	0.722	0.143	0.077	0.444	0.254	0.073	0.944	0.243	0.061	0.667	0.115		
Spain	LC	0.200	0.333	0.153	0.104	0.611	0.179	0.228	0.333	0.136	0.067	0.722	0.174		
	LC-LSTM	0.161	0.556	0.276	0.502	0.944	0.489	0.205	0.278	0.215	0.073	0.944	0.259		

x = 45

x = 65

Country	Model	Training period 1950-2000							Training period 1960-2000						
		Male			Female			Male			Female				
		RMSE(m)	$PICP_{(m)}$	$MPIW_{(m)}$	RMSE(m)	$PICP_{(m)}$	$MPIW_{(m)}$	RMSE(m)	$PICP_{(m)}$	$MPIW_{(m)}$	RMSE(m)	$PICP_{(m)}$	$MPIW_{(m)}$		
Australia	LC	0.157	1	0.672	0.061	0.944	0.283	0.106	1	0.623	0.058	1	0.293		
	LC-LSTM	0.056	1	0.371	0.061	1	0.431	0.043	1	0.365	0.052	1	0.436		
Japan	LC	0.054	1	0.177	0.160	0.444	0.178	0.063	0.833	0.161	0.151	0.333	0.128		
	LC-LSTM	0.035	0.944	0.141	0.077	1	0.262	0.029	1	0.261	0.028	1	0.141		
Spain	LC	0.097	0.278	0.157	0.079	0.778	0.206	0.106	0.222	0.158	0.073	0.889	0.229		
	LC-LSTM	0.060	1	0.285	0.66	1	0.568	0.080	0.889	0.249	0.068	0.944	0.340		

x = 85

Country	Model	Training period 1950-2000							Training period 1960-2000						
		Male			Female			Male			Female				
		RMSE(m)	$PICP_{(m)}$	$MPIW_{(m)}$	$RMSE_{(m)}$	$PICP_{(m)}$	$MPIW_{(m)}$	$RMSE_{(m)}$	$PICP_{(m)}$	$MPIW_{(m)}$	$RMSE_{(m)}$	$PICP_{(m)}$	$MPIW_{(m)}$		
Australia	LC	0.053	0.944	0.344	0.032	1	0.191	0.039	0.944	0.319	0.033	1	0.194		
	LC-LSTM	0.056	0.944	0.190	0.033	1	0.292	0.049	0.944	0.187	0.026	1	0.289		
Japan	LC	0.030	0.889	0.134	0.050	0.778	0.142	0.040	0.944	0.133	0.071	0.444	0.115		
	LC-LSTM	0.034	0.778	0.107	0.171	0.500	0.209	0.029	0.944	0.215	0.080	0.444	0.126		
Spain	LC	0.082	0.333	0.113	0.059	0.611	0.122	0.086	0.278	0.116	0.057	0.833	0.150		
	LC-LSTM	0.052	1	0.204	0.447	1	0.335	0.066	0.944	0.183	0.048	1	0.223		

Figure 1: MALE PI ($\alpha = 5\%$). Forecasting period: 2001-2018. Training period: 1950-2000 (left), 1960-2000 (right).

Numerical application - Long Term Forecasts

Figure 2: AUSTRALIA MALE ($\alpha = 5\%$). Age 65. Forecasting period: 2001-2050. Training period: 1950-2000 (left), 1960-2000 (right).

► Introduction

▶ Improving the Lee-Carter mortality density forecast

Conclusions

- The LC-LSTM seems to be an effective improvement of the canonical LC model predictive ability, in terms of both point and interval predictions
- The proposed model reflects important features, also in the long-run, as:
 - Robustness w.r.t. to the training period
 - Biologically consistency
 - Plausibility in uncertainty levels
- The LC-LSTM model poses a compromise between the interpretation of the mortality phenomenon and high precision in anticipating its future realizations

THANKS FOR YOUR ATTENTION!