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Mortality forecasting and Neural Networks

• Predicting mortality continues to be a challenge for

demographers and actuaries

• Nowadays, several stochastic mortality models are avalaible

• Lee-Carter (LC) family

• Cairns-Blake-Dowd (CBD) family

• Methodological advances in mortality forecasting based on
Machine and Deep Learning models

• Random forest, Gradient Boosting

• Feed-forward, Convolutional, Recurrent Neural Networks (NN)

• Exploting NN models as predictors, the idea is to create a

novel approach: the Mortality Neural Forecasting
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Mortality forecasting and Neural Networks

• The present work follows and completes the study in Nigri et

al. (2019)

• The approach is the following:
A. Consider a stochastic mortality model as reference model to fit

the observed mortality surface

B. Forecast future mortality paths by a proper NN model

• The overall mortality model is hybrid, achieving:
1. Ease of interpretation of age-period-cohort parameters

2. Accuracy in estimating future mortality outcomes

Model proposal: the LC-LSTM

The LC model as reference model and the LSTM network to

improve the LC mortality density forecast
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The LC-LSTM model - Formulation

I Reference model: LC Poisson model (Brouhns et al.(2002)).

For x ∈ X = {0, 1, . . . , ω} and t ∈ T = {t0, t1, . . . , tn}, we have

Dx ,t ∼ Poi(E c
x ,tmx ,t) and

lnmx ,t = αx + βxkt . (1)

I Let κT = (kt−j)t∈T be the vector of the time lagged kt , being

j ∈ N the time lag, we consider:

kt = fLSTM (κT ;W) + γt , (2)

with fLSTM : Rj → R the LSTM function and W the weights.

I Over the forecasting horizon T ′ = {tn + 1, tn + 2, . . . , tn + s},
the LC-LSTM model expression is:

lnmx ,t = α̂x + β̂x (fLSTM (κT ′ ;W) + γt) , ∀t ∈ T ′, (3)

with α̂x and β̂x the estimates of age-dependent parameters.
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The LC-LSTM model - Point Predictions

• From a general perspective, the LC time-index values should be

interpreted as the realization of the following process:

kt = ϕ (κT ) + γt , ∀t ∈ T , (4)

where the unknown function ϕ : Rj → R maps the vector κT to kt

over the time horizon T , unless the noise component.

• The network approximates ϕ (κT ) according to the time-index

history:

k̂t = f̂LSTM

(
κT ;Ŵ

)
= E (kt |κT ) (5)

• Therefore, the LC-LSTM model provides the following point

predictions:

ln m̂x ,t = E (lnmx ,t) = α̂x + β̂x f̂LSTM

(
κT ′ ;Ŵ

)
, ∀t ∈ T ′. (6)
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The LC-LSTM model - Uncertainty estimation

• Point predictions could be a poor information and a measure

of uncertainty, such as prediction intervals, is necessary

• Exploting the bias-variance trade-off principle, the total

variance associated to time-index values is:

σ2kt = σ2
k̂t

+ σ2γ + E
[
BIAS

(
k̂t
∣∣κT ′

)2]
(7)

where σ2
k̂t

is the NN output variance, σ2γ is the noise variance

and BIAS
(
k̂t
∣∣κT ′

)
= E

(
ϕ (κT ′)− k̂t

∣∣κT ′

)
.
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The LC-LSTM - estimating σ2
k̂t

• To derive σ2
k̂t

the conditioned time-index distribution,

P
(
k̂t
∣∣κT ′

)
should be known, but it is not available.

• We could extract it from the data referring to the ensemble

technique

• Using bootstrap techniques, multiple training data samples are

generated to develop an empirical distribution, P̂
(
k̂t
∣∣κT ′

)
• The final estimates are then obtained aggregating, by average,

the various outputs: bootstrap aggregating or bagging

• In bagging procedures holds that E
[
BIAS

(
k̂t
∣∣κT ′

)2]
→ 0
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The LC-LSTM - estimating σ2
k̂t

The bagging scheme:

Step 1. Over the series κT , we train the LSTM model obtaining point

estimates over T ′

Step 2. Generate B ∈ N samples of κT via a proper bootstrap

procedure

Step 3. For each sample re-optimize the weights of NN defined in

Step 1

Step 4. For each NN in Step 3, predict the associate point estimate

on T ′, producing a bootstrap distribution consisting of B

point predictions:

P̂
(
k̂t
∣∣κT ′

)
=
(
k̂
(b)
t = f̂LSTM

(
κ
(b)
T ,Ŵ(b)

)
, b = 1, . . . ,B

)
(8)
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The LC-LSTM - estimating σ2
k̂t

Step 5. From P̂
(
k̂t
∣∣κT ′

)
calculates estimates of interest by

aggregation. Hence, the bagged estimate of the variance σ2
k̂t

is:

σ̂2
k̂t

=
1

B − 1

B∑
b=1

(
f̂LSTM

(
κ
(b)
T ,Ŵ(b)

)
− kt

)
, (9)

where

kt =
1

B

B∑
b=1

f̂LSTM

(
κ
(b)
T ,Ŵ(b)

)
is the bagged estimate for the conditional expectation

E
(
k̂t
∣∣κT ′

)
.
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The LC-LSTM - estimating σ2
γ

• Mortality dynamic incorporates an intrinsic randomness not

explained by the network: the noise γ

• A NN appropriately trained catches the key input-output data

schemes, skimming noisy examples (avoid overfitting)

• Let T be the training set interval, we deal with the series

(γt)t∈T =
(
kt − k̂t

)
t∈T

as a proxy of the unwrapped noise by NN

• It helps to evaluate the estimates σ̂2γ as the time-index

residual uncertainty over T , spreading the random error over

the forecast horizon T ′ through a random walk representation
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Numerical application

• Countries: Australia, Spain and Japan. Data from HMD, both

genders

• Ages: X = {0, . . . , 99}

• Calendar Years: Two periods to check model robustness

T = {1950, . . . , 2018} and T = {1960, . . . , 2018}

• Lag J = 1, so that κT = (kt−1)t∈T and

kt = fLSTM (kt−1;W) + γt

• For the bagging scheme: bootstrap from Koissi et al.(2006),

with B = 1000

• Benchmark: LC Poisson model (Brounhs et al.(2002)),

selecting the best ARIMA(p,d,q) model.

15



Numerical application - Learning process

• Setting T = 2000 as forecasting year, the series κT is splitted

in:

TRAINING SET: T R = (kt |kt−1)t=t0,...,T

TESTING SET: T S = (kt |kt−1)t=T+1,...,tn
,

(10)

where t0 = {1950, 1960}.

• To validate the model we divide the T R set into a

sub-training set and in a validation set, considering the

splitting rule 80%− 20%:

SUB-TRAINING SET: T Rsub = (kt |kt−1)t=t0,...,T sub

VALIDATION SET: VS = (kt |kt−1)t=T sub+1,...,T

(11)

• Tuning by grid search
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Numerical application - Performance metrics

• Accuracy metrics for point predictions, with ŷ = {k̂ ; ln m̂}

RMSE(y) =

√∑tn+s
t=tn+1 (yt − ŷt)

2

s − 1

• Quality metrics for prediction interval, with ŷ = {k̂ ; ln m̂}

Prediction Interval Coverage Probability

PICP(y) =
1

s − 1

tn+s∑
t=tn+1

1{ŷt ∈ [ŷL
t ,ŷ

U
t ]},

Mean Prediction Interval Width

MPIW(y) =
1

s − 1

tn+s∑
t=tn+1

ŷUt − ŷLt .

with 1{·} = 1 if ŷ ∈ [yL, yU ], and 1{·} = 0 otherwise.
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• kt performance metrics for each training period. Forecasting

years: 2001-2018.

Country Model

Training period 1950-2000 Training period 1960-2000

Male Female Male Female

RMSE PICP(k) MPIW(k) RMSE PICP(k) MPIW(k) RMSE PICP(k) MPIW(k) RMSE PICP(k) MPIW(k)

Australia
ARIMA 9.514 1 53.503 3.861 1 25.195 5.138 1 47.485 3.637 1 25.089

LSTM 4.280 1 32.865 3.790 1 39.478 1.970 1 28.143 2.659 1 37.433

Japan
ARIMA 3.743 1 21.503 10.084 0.556 20.767 4.647 1 17.392 9.790 0.500 12.409

LSTM 2.228 1 43.784 18.014 1 53.431 2.069 1 28.209 5.818 1 30.701

Spain
ARIMA 14.038 0.333 19.354 6.215 1 21.394 13.071 0.333 17.343 5.805 1 20.747

LSTM 8.625 1 35.424 7.471 1 60.373 9.983 0.778 23.340 4.357 1 28.141
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• lnmx,t performance metrics for each training period. Forecasting years:

2001-2018.

x = 45

Country Model

Training period 1950-2000 Training period 1960-2000

Male Female Male Female

RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m)

Australia
LC 0.227 1 0.534 0.091 0.944 0.267 0.175 1 0.478 0.084 0.944 0.265

LC-LSTM 0.110 0.944 0.295 0.142 0.944 0.407 0.116 0.944 0.280 0.097 1 0.394

Japan
LC 0.071 0.667 0.180 0.255 0 0.173 0.063 0.722 0.150 0.155 0.056 0.105

LC-LSTM 0.062 0.722 0.143 0.077 0.444 0.254 0.073 0.944 0.243 0.061 0.667 0.115

Spain
LC 0.200 0.333 0.153 0.104 0.611 0.179 0.228 0.333 0.136 0.067 0.722 0.174

LC-LSTM 0.161 0.556 0.276 0.502 0.944 0.489 0.205 0.278 0.215 0.073 0.944 0.259

x = 65

Country Model

Training period 1950-2000 Training period 1960-2000

Male Female Male Female

RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m)

Australia
LC 0.157 1 0.672 0.061 0.944 0.283 0.106 1 0.623 0.058 1 0.293

LC-LSTM 0.056 1 0.371 0.061 1 0.431 0.043 1 0.365 0.052 1 0.436

Japan
LC 0.054 1 0.177 0.160 0.444 0.178 0.063 0.833 0.161 0.151 0.333 0.128

LC-LSTM 0.035 0.944 0.141 0.077 1 0.262 0.029 1 0.261 0.028 1 0.141

Spain
LC 0.097 0.278 0.157 0.079 0.778 0.206 0.106 0.222 0.158 0.073 0.889 0.229

LC-LSTM 0.060 1 0.285 0.66 1 0.568 0.080 0.889 0.249 0.068 0.944 0.340

x = 85

Country Model

Training period 1950-2000 Training period 1960-2000

Male Female Male Female

RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m) RMSE(m) PICP(m) MPIW(m)

Australia
LC 0.053 0.944 0.344 0.032 1 0.191 0.039 0.944 0.319 0.033 1 0.194

LC-LSTM 0.056 0.944 0.190 0.033 1 0.292 0.049 0.944 0.187 0.026 1 0.289

Japan
LC 0.030 0.889 0.134 0.050 0.778 0.142 0.040 0.944 0.133 0.071 0.444 0.115

LC-LSTM 0.034 0.778 0.107 0.171 0.500 0.209 0.029 0.944 0.215 0.080 0.444 0.126

Spain
LC 0.082 0.333 0.113 0.059 0.611 0.122 0.086 0.278 0.116 0.057 0.833 0.150

LC-LSTM 0.052 1 0.204 0.447 1 0.335 0.066 0.944 0.183 0.048 1 0.223 19



Figure 1: MALE PI (α = 5%). Forecasting period: 2001-2018. Training

period: 1950-2000 (left), 1960-2000 (right).
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Numerical application - Long Term Forecasts

Figure 2: AUSTRALIA MALE (α = 5%). Age 65. Forecasting period:

2001-2050. Training period: 1950-2000 (left), 1960-2000 (right).
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Conclusions

• The LC-LSTM seems to be an effective improvement of the

canonical LC model predictive ability, in terms of both point

and interval predictions

• The proposed model reflects important features, also in the
long-run, as:

• Robustness w.r.t. to the training period

• Biologically consistency

• Plausibility in uncertainty levels

• The LC-LSTM model poses a compromise between the

interpretation of the mortality phenomenon and high precision

in anticipating its future realizations
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