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Motivation Causal inference framework Applications Conclusion

Motivation

Traditional insurance pricing only from costs to increase profits

In reality, also demand effects that may indirectly decrease profits

Confounding in assigned premium and a customer’s response:

Risk Premium Churn

Moreover, premia are not offered at random in practice

→ So risk characteristics will be insufficiently balanced
Causal inference solution by Guelman and Guillén (2014):

(i) Discretize percentage premium changes
(ii) Impute counterfactual responses with propensity score matching
(iii) Optimize next period’s profit given predicted responses
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Relevant previous studies

Causal inference framework:

(i) Discrete treatments
(Rosenbaum and Rubin, 1983; Rubin, 1997; Morgan and Winship,
2007; Guo and Fraser, 2009; Rosenbaum, 2010; McCaffrey et al.,
2013; Guelman and Guillén, 2014; Wager and Athey, 2018)

(ii) Continuous treatments
(Hirano and Imbens, 2004; Imai and Van Dyk, 2004; Fryges and
Wagner, 2008; Guardabascio and Ventura, 2014; Zhu et al., 2015;
Kreif et al., 2015; Zhao et al., 2018)

Applications of continuous treatment framework sparse in

non-life insurance
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Customer price sensitivity

Let random variable Yi (t) ∈ {0, 1} denote policy i ’s churning
response to any potential rate change, or treatment, t ∈ T
Actually assigned treatment given by Ti with risk characteristics Xi

Causal inference relies on two assumptions:

(i) Actual rate changes depend only on the observed risk characteristics
(weak unconfoundedness): Yi (t) ⊥ Ti |Xi ∀t ∈ T

(ii) Each customer has non-zero probability of receiving every rate change
(common support): 0 < π(t,Xi ) := P [Ti = t|Xi ] < 1 ∀t ∈ T

Together this allows identification of average treatment effects

without bias by controlling for confounders (strong ignorability)
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Discrete treatment categories

Discretize observed treatments Ti in T categories {t1, . . . , tT}
Match customers based on similarity:

(i) Challenging or even impossible with many risk characteristics
(ii) Propensity score π(ts ,Xi ) one-dimensional alternative, sufficient due

to balancing property: Ti ⊥ Xi |π(ts ,Xi ) ∀s ∈ {1, . . . ,T}
(iii) If strong ignorability holds conditional on Xi then also conditional on π
Propensity score to explain treatments Ti as accurately as possible

→ XGBoost of Chen and Guestrin (2016) is appropriate for this Details

Impute counterfactual responses from propensity score matches

→ Multiple imputation to (partially) include response uncertainty Details

Form global response model from both observed and imputed data
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Continuous treatment doses

Continuum of potential treatment doses T = [T ,T ]

Balancing and strong ignorability property still valid

Traditional global response model only conditional on π(Ti ,Xi ):

(i) E [Yi (Ti )|π(Ti ,Xi )] = α0 + α1π(Ti ,Xi ) + α2π(Ti ,Xi )
2

+ α3Ti + α4T
2
i + α5π(Ti ,Xi )Ti

(ii) Ê [Y (t)] = 1
N

∑N
i=1

(
α̂0 + α̂1π̂(t,Xi ) + α̂2π̂(t,Xi )

2

+ α̂3t + α̂4t
2 + α̂5π̂(t,Xi )t

)
No direct causal interpretation of global response model

→ So can use XGBoost for this as well
→ Can still use it to predict individual potential responses
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Dutch automobile insurance portfolio

Individual policy renewals from 2017-2019:

(i) 71,522 policies with 20,649 (28.87%) lapses
(ii) Rate change quintile intervals [−9.28%, 1.53%], (1.53%, 6.06%],

(6.06%, 8.58%], (8.58%, 12.58%] and (12.58%, 27.01%]

Premia offered by the six largest competitors:

(i) Competitiveness (B − A)/A of each renewal offer before any rate
changes (A) relative to current cheapest competing offer (B)

(ii) Underpricedness of renewal offers compared to cheapest and
second-cheapest competitor
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Observed churn proportions

Stable, slowly increasing churn ratios

Relatively large inflection at small rate changes

→ Indication of let sleeping dogs lie effect

Churn proportions, rate changes (left) - competitiveness (right)
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Propensity score matching

Increase in balance of each risk factor, up to 95%

Discrete approach improves balance considerably more:

(i) Optimizes the rate change interval assignments directly
(ii) Only has to distinguish between five categories

Common support and hence strong ignorability hold

Average propensity scores
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Customer price sensitivities

Intuition:

(i) More worthwhile to switch at higher or very small rate changes
(ii) Comparison of insurers more likely for very competitive policies

Average customer churn, discrete (left) - continuous (right)
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Efficient frontier

Constrained optimization of next year’s expected profit: Details

(i) Trade-off between customer churn and profit potential
(ii) Only small improvement due to multiple imputation
(iii) Substantially more profit in continuous approach due to XGBoost and

ability to distinguish between rate changes in each interval

Efficient frontier, discrete (left) - continuous (right)
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Efficient frontier, discrete one imputation (left) - continuous (right)
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Efficient frontier, discrete XGBoost (left) - continuous (right)
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Efficient frontier

Constrained optimization of next year’s expected profit: Details

(i) Trade-off between customer churn and profit potential
(ii) Only small improvement due to multiple imputation
(iii) Substantially more profit in continuous approach due to XGBoost and

ability to distinguish between rate changes in each interval

Efficient frontier, discrete XGBoost (left) - continuous restricted (right)
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Multi-period renewal optimization

Constrained optimization of expected profit over τ periods: Details

(i) Slightly lower rate changes in first period due to temporal feedback
(ii) Substantially more profit possible, especially in continuous approach

Expected yearly profit and churn, discrete (left) - continuous (right)
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Conclusion

Shift from cost-based pricing to demand-based pricing

Causal inference approach required to adjust for confounding

Application to automobile insurance shows:

(i) Policy’s competitiveness crucial for price sensitivity
(ii) Substantially more profit can be gained than realized, also already with

less churn and in particular using continuous approach
(iii) Temporal feedback of previous rate changes on future demand enabled

through competitiveness
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Future research

Introduce risk characteristics in matching procedure

Primary focus on logistic GLMs and XGBoost:

(i) Compare to alternative machine learning methods, such as (causal)
random forests, (deep) neural networks or support vector machines

(ii) Consider ensemble of various (machine learning) models
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XGBoost and multiple imputation

Gradient Boosting Models for propensity score: Return

(i) Combines many weak learners to learn from errors of previous learners
(ii) Flexible non-linear effects of risk factors
(iii) Identification of complex interactions in tree-learning algorithm
(iv) Built-in variable selection procedure

XGBoost of Chen and Guestrin (2016) more flexible and faster

Multiple imputation to (partially) include response uncertainty:

(i) Randomly sampleM counterfactual responses from I closest matches
(ii) Combine global response estimates δm = (βm, γm):

δ̄ = 1
M

∑M
m=1 δ̂m and Var(δ̄) = W̄ +

(
1 + 1

M

)
B

(iii) Within-imputation, or parameter, uncertainty:
W̄ = 1

M

∑M
m=1 Ŵm

(iv) Between-imputation, or imputation, uncertainty:

B = 1
M−1

∑M
m=1

(
δ̂m − δ̄

)′ (
δ̂m − δ̄

)
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Constrained renewal optimization

Constrained optimization of next year’s expected profit: Return

max
{ti}Ni=1∈T N

{
N∑
i=1

(
1 − Ŷi (ti )

)
(Premiumi − Costsi )

}
s.t.

1
N

N∑
i=1

Ŷi (ti ) ≤ α

Constrained optimization of expected profit over τ periods: Return

max
{ti,j}

N,τ
i=1,j=1∈T Nτ


N∑
i=1

τ∑
j=1

 j∏
h=1

[
1 − Ŷi (ti,1, . . . , ti,h)

](Premiumi,j − Costsi,j
)

s.t.

1
N

N∑
i=1

Ŷi (ti,1, . . . , ti,j ) ≤ αj for j = 1, . . . , τ

→ Overall churn rate limited to average churn rate expected for actual
renewal offers, or αj = 1

N

∑N
i=1 Ŷi (Ti,1, . . . ,Ti,j) for j = 1, . . . , τ
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