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Motivation

Modelling of insurance claim amounts is challenging since simple loss distributions usually
lead to a poor fit,

The reasons for this are: unobserved heterogeneity, multi-modality, heavy tailedness of
claim amounts and different tail behavior of small and large claim amounts,

One solution: We can try to fit mixtures of distributions,

Mixtures of Erlang distributions (Gamma distributions with integer shape parameters)
with a common rate parameter play an important role here since such mixtures are dense
in the space of positive continuous distributions in the weak convergence sense.
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Motivation

The additional complexity in loss distribution modelling comes from the fact that the
parameters of the loss distribution vary across individuals and their values can be related
to fixed effects explained by observable features of the individuals,

In actuarial pricing, in case of claim severities, the most common approach is to fit a
Generalized Linear Model (GLM) or Generalized Additive Model (GAM) with Gamma
responses to differentiate the expected claim severity across policyholders based on their
features,

The classical fit of Gamma GLM/GAM to claim amounts might be unsatisfactory, again
due to the characteristics of the insurance claim amounts mentioned above,

One solution: We can try to fit mixtures of GLMs/GAMs/experts to model the
parameters of the distributions as functions of the features.
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Goal of the study

We investigate mixtures of Gamma distributions with all parameters related to features
which characterize the individuals,

The goal is to fit the density:

f(y|x) =
K∑
k=1

pk(x)
β(x)αk(x)

Γ(αk(x))
yαk(x)−1e−β(x)y , y > 0, (1)

where the mixing probabilities (pk)Kk=1, the shape parameters (αk)Kk=1 and the rate
parameter β depend on a d-dimensional vector of features x = (x1, . . . , xd),

The novel part: We use neural networks with two architectures to model the parameters(
(pk)Kk=1, (αk)Kk=1, β

)
in the mixture of Gamma distributions as functions of features x,

We call (1) by Gamma Mixture Density Network (Gamma MDN).
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Contribution to the literature

The Gamma MDN with mixing probabilities, shape and rate parameters all depending on
features is a next natural step in modelling claim amounts,

Compared to mixtures of experts and mixtures of GLMs, by applying neural networks we
gain more flexibility in finding non-linear relations between features and responses,
including interactions between features, and we can model dispersion coefficients with
features,

By applying early stopping and regularization, we control over-fitting of our network
regression model, from which the full mixture of experts suffers,

We test calibration strategies for Gamma MDNs and we develop two versions of the
Expectation-Maximization algorithm for fitting Gamma MDNs, which we call the EM
network boosting algorithm and the EM forward network algorithm,

We illustrate an actuarial application on a real data set and we conclude that Gamma
MDNs can improve the fit of the regression model and the predictions of the claim
severities compared to classical actuarial technique.
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Two architectures of Gamma MDN

We choose a neural network with M ∈ N hidden layers and qm ∈ N hidden neurons in
each hidden layer m = 1, . . . ,M ,

We define the network layers as follows

x ∈ Rqm−1 7→ θm(x) =
(
θm1 (x), . . . , θmqm (x)

)′ ∈ Rqm , m = 1, . . . ,M,

x ∈ Rqm−1 7→ θmr (x) = ϕ
(
bmr + 〈wm

r ,x〉
)
, r = 1, . . . , qm,

where ϕ : R→ R denotes an activation function, wm
r ∈ Rqm−1 denotes network weights,

bmr ∈ R denotes a bias term, and 〈·, ·〉 denotes a scalar product in Rqm−1 ,

The mapping:

x ∈ Rq0 7→ ΘM+1(x) =
(
ΘM+1

1 (x), . . . ,ΘM+1
qM+1

(x)
)′ ∈ RqM+1 ,

with a composition of the network layers θ1, . . . , θM , and the components

x 7→ ΘM+1
r (x) = bM+1

r +
〈
wM+1
r ,

(
θM ◦ · · · ◦ θ1

)
(x)
〉
, r = 1, . . . , qM+1,

gives us the prediction based on x in the output layer M + 1 of dimension qM+1, on the
canonical scale of the parameter.
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Two architectures of Gamma MDN

Architecture 1: Three separate neural networks for
(
(pk)Kk=1, (αk)Kk=1, β

)
:

The parameters for an individual case i are determined by

βi = β(xi) = egβ,1(xi),

gβ,1(xi) = cβ log
(
β̂init(xi)

)
+ bM+1

β +
〈
wM+1
β ,

(
θMβ ◦ · · · ◦ θ

1
β

)
(xi)

〉
,

αi,k = αk(xi) = egα,k(xi),

gα,k(xi) = cα,k log
(
α̂init
k (xi)

)
+ bM+1

α,k +
〈
wM+1
α,k ,

(
θMα ◦ · · · ◦ θ1

α

)
(xi)

〉
,

pi,k = pk(xi) =
egp,k(xi)∑K
u=1 e

gp,u(xi)
,

gp,k(xi) = cp,k log
(
p̂init
k (xi)

)
+ bM+1

p,k +
〈
wM+1
p,k ,

(
θMp ◦ · · · ◦ θ1

p

)
(xi)

〉
,

where β̂init(xi), (α̂init
k (xi))k=1,...,K and (p̂init

k (xi))k=1,...,K denote initial estimates of
the parameters for individual i, and cβ , (cα,k)k=1,...,K and (cp,k)k=1,...,K denote
trainable weights related to the initial estimates.
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Two architectures of Gamma MDN

Architecture 1: Three separate neural networks for
(
(pk)Kk=1, (αk)Kk=1, β

)
:

After the three networks are jointly calibrated, the parameters are estimated with the
transformations:

β̂i =
(
β̂init(xi)

)ĉβ
e
Θ̂M+1
β,1

(xi),

α̂i,k =
(
α̂init
k (xi)

)ĉα,k
e
Θ̂M+1
α,k

(xi), k = 1, . . . ,K,

p̂i,k =

(
p̂init
i,k (xi)

)ĉp,k
e
Θ̂M+1
p,k

(xi)

∑K
u=1

(
p̂init
i,u (xi)

)ĉp,u
eΘ̂

M+1
p,u (xi)

, k = 1, . . . ,K,

The weights and the bias terms depend on the network we fit for the parameter, this is
highlighted by lower subscripts in c and ΘM+1.
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Two architectures of Gamma MDN

Architecture 2: One neural network for
(
(pk)Kk=1, (αk)Kk=1, β

)
:

We use only one neural network with output dimension qM+1 = 2K + 1 in layer M + 1,
to which offsets with corresponding initial estimates of the parameters are added and
exponential and softmax activation functions are applied at the last step,

After the network is calibrated, the parameters are estimated with the transformations:

β̂i =
(
β̂init(xi)

)ĉk
eΘ̂

M+1
k

(xi), k = 1,

α̂i,k =
(
α̂init
k (xi)

)ĉ1+k
e
Θ̂M+1

1+k
(xi), k = 1, . . . ,K,

p̂i,k =

(
p̂init
k (xi)

)ĉ1+K+k
e
Θ̂M+1

1+K+k
(xi)

∑2K+1
u=K+2

(
p̂init
u (xi)

)ĉu
eΘ̂

M+1
u (xi)

, k = 1, . . . ,K,

All parameters share the weights and the bias terms of one neural network. There is no
lower subscript related to (p, α, β) in Θ̂M+1.
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EM algorithm

Mixtures of distributions/GLMs/experts are usually estimated with a version of the
Expectation-Maximization algorithm,

Let D = (yi,xi)
n
i=1 denote the data set at our disposal, and let L

(
p, α, β

∣∣D) denote the

corresponding log-likelihood,

To any observation (yi,xi) we associate a vector of latent variables zi = (zi,1, . . . ,
zi,K) ∈ {0, 1}K , which illustrates the one-hot encoding of which mixture component a
particular observation yi has been chosen from,

We define the expected value of the complete-data log-likelihood for (yi,xi,zi)
n
i=1 under

the posterior distribution of the latent variables:

Q
(
p, α, β

∣∣(yi,xi)ni=1

)
=

n∑
i=1

K∑
k=1

ẑi,k log
(
pk(xi)

β(xi)
αk(xi)

Γ(αk(xi))
y
αk(xi)−1
i e−β(xi)yi

)
,

where (ẑi,k)k=1,...,K denote the posterior probabilities of the latent variables w.r.t.
(yi,xi) for cases i = 1, . . . , n.
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EM algorithm

We iterate the following computations for ` = 0, 1, . . . , `∗:

Step 1: Assume the estimates of
(
(p̂`i,k)Kk=1, (α̂

`
i,k)Kk=1, β̂

`
i

)
are given for cases i = 1, . . . , n;

Step 2: [Expectation step] The unobserved variables (zi)i=1,...,n are estimated with the posterior probabilities:

ẑ
`
i,k =

p̂`i,k

(
β̂`i

)α̂`i,k
Γ(α̂`

i,k
)
y
α̂`i,k−1

i e−β̂
`
i yi

∑K
k=1

p̂`
i,k

(
β̂`
i

)α̂`
i,k

Γ(α̂`
i,k

)
y
α̂`
i,k

−1

i e
−β̂`

i
yi

, for k = 1, . . . , K and i = 1, . . . , n;

Step 3: [Maximization step] The function Q(p, α, β|D) with ẑi,k = ẑ`i,k is optimized with respect to the

parameters of the regression functions for
(
(pk)Kk=1, (αk)Kk=1, β

)
;

Step 4: The new estimates of
(
(p̂`+1
i,k

)Kk=1, (α̂
`+1
i,k

)Kk=1, β̂
`+1
i

)
are derived from the regression functions fitted in

Step 3,

The log-likelihood L
(
p̂`, α̂`, β̂`

∣∣D) increases in consecutive iterations ` = 0, 1, . . .,

The EM algorithm converges to a local maximum if the likelihood is bounded,

Remark: The likelihood for our mixture of Gamma distributions is bounded.
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EM algorithm

The estimation of neural networks of Gamma MDN in each EM loop is a not-trivial
optimization procedure,

If the networks are poorly initialized at the next iteration, then the log-likelihood
L
(
p̂`, α̂`, β̂`

∣∣D) may decrease - this is an important difference compared to the EM
algorithm for fitting mixtures of GLMs/experts,

We should discuss how the information about the parameters should be passed effectively
between the iterations of the EM algorithm and how to initialize the neural networks
(weights and biases) in consecutive iterations of the EM algorithm,

The EM network boosting algorithm: We can pass the present estimates of the
parameters

(
(pk)Kk=1, (αk)Kk=1, β

)
given by

(
(p̂`i,k)Kk=1, (α̂

`
i,k)Kk=1, β̂

`
i

)n
i=1

and include

them as the offsets
(
(p̂init
i,k )Kk=1, (α̂

init
i,k )Kk=1, β̂

init
i

)n
i=1

in the M-step of the next loop

`+ 1. In addition, we have to initialize the weights and bias terms (see the paper for
details on four initialization procedures),

The EM forward network algorithm: We can pass forward from one to the next loop all
the fitted network parameters (the weights and biases) and drop the offsets. We
initialize the weights and biases in all layers of the network trained at step `+ 1 by setting

the values of
(
(wm

r )qmr=1, (b
m
r )qmr=1

)M+1

m=1
which are recovered from the last network trained

at step `.
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EM algorithm

For the EM network boosting algorithm, the neural networks fitted in the last iteration `∗

depend on the parameter estimates from the previous iteration `∗ − 1, since we recursively
use the parameter estimates of EM loop ` as initial values (offsets) for EM loop `+ 1,

In order to derive the final regression models for the parameters
(
(pk)Kk=1, (αk)Kk=1, β

)
,

we fit a so-called meta model,

The meta model is a new Gamma MDN which reproduces the estimates(
p̂`

∗+1
k )Kk=1, (α̂

`∗+1
k )Kk=1, β̂

`∗+1),

To calibrate the meta model, we minimize the Kullback-Leibler divergence between the
mixtures of Gamma distributions of the meta model and the model from the last iteration
of the EM algorithm (see the paper for details),

We use analogous architectures (architecture 1 and 2) for the meta model as for the
networks fitted in the EM iterations.
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Simulation study

Data set 1: We generate 100,000 observations from a mixture of three Gamma
distributions with probabilities, shape and rate parameters depending on a
three-dimensional variable x = (x1, x2, x3) ∈ [−1, 1]3,

Data set 2: We generate 100,000 observations from a mixture of three Log-normal
distributions. The mixing probabilities are the same as in data set 1. The expected values
and the variances of the three individual Log-normal distributions are chosen so that they
are equal to the expected values and the variances of the three individual Gamma
distributions in data set 1,

For both data sets, we performed optimization of hyperparameters by considering a range
of possible values for hyperparameters.
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Simulation study - data set 1

Architecture 1
Algorithm EM NB 3 EM NB 4 EM FN

Epochs 25 100 25 100 25 100
Log-likelihood -0.1591 -0.1589 -0.1581 -0.1580 -0.1573 -0.1578
Architecture 2

Algorithm EM NB 3 EM NB 4 EM FN
Epochs 25 100 25 100 25 100

Log-likelihood -0.1588 -0.1586 -0.1578 -0.1585 -0.1573 -0.1575

Table: The maximum log-likelihood achieved on the validation set.

We prefer the forward network algorithm, Architecture 2 and 25 epochs,

We need ca. 13 minutes to achieve the highest log-likelihood on the validation set (100
iterations of the EM algorithm).
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Simulation study - data set 1
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Figure: Validation of the estimates from the meta model vs. EM NB 4.
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Simulation study - data set 1
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Figure: Results of the calibrations.
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Simulation study - data set 1
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Figure: Results of the calibrations.

 L. Delong (SGH) Gamma MDN 18 / 26



Simulation study - data set 2

We investigate the robustness of our algorithms with respect to the tail of the underlying
distribution,

We expect that mixtures of Gamma distributions can approximate any response of any
distribution arbitrarily well in the weak convergence sense if we allow for sufficient
complexity in the mixture,

We fit mixtures of Gamma distributions for K = 1, 2, 3, . . . with the EM forward network
algorithm and investigate the log-likelihood on a validation set for different numbers of
Gamma components.

No of mixtures 3 4 5 6 7 8 9
Log-likelihood -0.1815 -0.1757 -0.1733 -0.1708 -0.1698 -0.1700 -0.1706

Table: The maximum log-likelihood achieved on the validation set.

Remark: In a similar analysis for data set 1 we choose 3 mixtures of Gamma, but the
results are very close also for 4 and 5 mixtures.
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Simulation study - data set 2
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Figure: Validation of the true moments and the quantiles of the mixture of three Log-normal
distributions vs. their predictions with the mixture of seven Gamma distributions.
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Actuarial application - real data set

We apply Gamma MDNs to model the claim amounts available from the data set
freMPL1 contained in the R package CASdatasets,

This data set includes 3,265 non-zero (multi-modal and heavy-tailed) claims from a motor
personal line from a French insurer,

For each observation in the data set, we have the claim amount and variables which
characterize the observation. We have three continuous features, four binary features and
eleven categorical features,

Some categorical features are ordered categorical features and they can be implemented
as categorical variables or continuous variables in the neural networks after ordinal
encoding. We test both approaches. For categorical features, we apply the entity
embedding technique,

We run our EM network algorithms with hyperparameter optimization. We choose the
mixture of seven Gamma distributions.
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Actuarial application - real data set

Ordered categorical as categorical features
Algorithm EM FN EM NB 1 EM NB 2 EM NB 3 EM NB 4

Log-likelihood -8.5386 -8.5481 -8.5498 -8.5017 -8.5927
Ordered categorical as continuous features

Algorithm EM FN EM NB 1 EM NB 2 EM NB 3 EM NB 4
Log-likelihood -8.5291 -8.5475 -8.5422 -8.4989 -8.5922

Table: The maximum log-likelihood achieved on the validation set.

We prefer the network boosting algorithm with Initializer 3, we only tested Architecture 2
and 25 epochs,

We need ca. 2 minutes to achieve the highest log-likelihood on the validation set (50
iterations of the EM algorithm),

The approach where we model the ordered categorical features as continuous features is
slightly better than the approach where the variables are treated as pure categorical, but
the results are very similar and additional runs are needed to confirm this hypothesis.
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Actuarial application - real data set

As the benchmark model, we fit a GAM with a Gamma response and the logarithmic link
function. In this model the continuous (normalized) features are modelled with regression
splines and the categorical (also ordered) features are modelled using dummy variables.
No interactions are included,

The first advantage of our Gamma MDN: the predictive power of the regression model,
measured with the log-likelihood on the validation set, is increased from −8.7744 for the
GAM to −8.5280 for the Gamma MDN (the meta model fitted to the last model from the
EM NB),

The second advantage of our Gamma MDN: The fit of the regression model is
significantly improved. The fit of the GAM is poor, both in terms of the deviance function
and the QQ-plot. The fit of our mixture of seven Gamma distributions is very good. The
deviance function is almost perfect. The QQ-plot shows that the Gamma MDN is fitted
accurately for the quantiles ranging from 5% up to 99.5%, and only low and extremely
high quantiles are mis-estimated.
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Actuarial application - real data set
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Figure: Results of the calibrations with the GAM and the meta model of Gamma MDN.
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The paper is available at SSRN:  L. Delong, M.M. Lindholm, M.V. Wüthrich, 2021,
Gamma Mixture Density Networks and their application to modelling insurance claim
amounts,

The R codes are available at GitHub: https://github.com/LukaszDelong/GammaMDN.
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