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Introduction: Functional Data with Reporting Delay

P&C loss triangle:

I Workers’ compensation: 10+ years loss development ⇒ data with reporting
delay.

I Example loss triangle.

Related: Medical cases reporting

I Delay between diagnosis, onset of symptoms, and reporting cases.

I Example AIDS reporting data.
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Introduction: P&C Loss Development

Regulators and reinsurers on industry-wide loss (ratio) development.

I Study the pattern of loss development on a business line.

I Look for “anomalous” loss development for particular insurers.

I Increase / reduce exposure in particular business lines / types of company.

Loss reserving beyond a single triangle:

I Historical pattern of loss development may inform future.

I Loss development from other “similar” insurers’ may provide additional
information.
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Our Research

Using statistical learning approaches, we can explore:

I What is the general pattern of loss development? How is it linked to
company features?

I We use unsupervised learning to discover the patterns and anomalies of
industry-wide loss development in terms of functional curves.

We also visit the problem of loss reserving:

I How to obtain forecast for the incomplete loss development curves?

I We use a non-parametric, data-driven procedure to forecast future losses by
matching a partial loss development experience against similar completed
patterns in the database.
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Triangle Data

Paid loss triangle and normalizing:

I Incremental Loss Ratio (ILR): incremental paid loss in a development lag /
net premium earned.

I Cumulative Loss Ratio (CLR): cumulative sum of ILRs.

I Unsupervised learning: A sample of 100+ firm-year complete ILR function
curves from 1987 to 2010 in Workers’ Compensation.
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Data Summary Plots

(a) Incremental Loss Ratios (b) Cumulative Loss Ratios
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Methodology

Principal Component Analysis (PCA)

I Explore data structure in high dimensional and functional data.

I Good for interpretation and visualization.

I Apply a robust PCA algorithm (Croux, Filzmoser and Oliveira, 2007).

I Produce bivariate and functional bagplots using first two PCA scores
(Hyndman and Shang, 2010).

I Produce visualizations that track companies’ historical loss development
patterns.
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Principal Components

Figure: Cumulative Scree Plot
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Biplot: Principal Components and Variable Mapping

Figure: Biplot PC1-PC2
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Biplot: Principal Components and Variable Mapping

Lag 0 positively influences PC2 and somewhat correlated with Lag 1.

Figure: Biplot PC1-PC2
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Biplot: Principal Components and Variable Mapping

Lag 1 positively influences PC1.

Figure: Biplot PC1-PC2
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Biplot: Principal Components and Variable Mapping

Lag 2 to 9 are correlated and somewhat negatively correlated with Lag 0.

Figure: Biplot PC1-PC2
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Bivariate and Functional Bagplots

Figure: Bivariate bagplot of Incremental Loss Ratios
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Bivariate and Functional Bagplots

(a) Bivariate bagplot (b) Functional bagplot

Figure: Incremental Loss Ratios
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Explore Patterns within Company Covariates

Company Covariates Data

I Business focus: commercial, personal, minimum.

I Capital structure: stock, mutual, other.

I Geographical focus: Northeast, South, Midwest, West, National.
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Explore Patterns within Company Covariates

Figure: Biplot by business focus
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Explore Patterns within Company Covariates

Figure: Bagplot by capital structure
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Explore Patterns within Company Covariates

Figure: Bagplot by region
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Explore Patterns within Company Covariates

Figure: Bagplot by accident year
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Representative Companies

Figure: Tracking two companies from 1987 to 2010
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Representative Companies
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Representative Companies
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Loss Reserving Model

Goal: forecast partially complete CLR curves.

I Incorporating information from the past complete curves.

I Incorporating information from similar curves of other companies.

Functional data forecast methods:

I Diebold and Li (2006): parametric modeling of treasury yield curves; forecast
level, slope and curvature parameters; recover yield curve forecast.

I Shang (2013): nonparametric modeling of electricity demand curves using
FPCA; forecast FPCA scores; allowing forecast of partially complete curves.
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Loss Reserving Model

Modeling Idea:

I Obtain PCA decomposition of complete CLR curves.
I Mean curves, loadings and scores.

I Forecast PCA scores.
I Within one company: time-series forecast.
I Among all companies: generalized linear model.

I Forecast the incomplete portion of the CLR curve using Penalized Least
Squares.
I Least square on partially complete curve with PCA score forecasts as

regularization constraint.
I Hyperparameters: number of PCA loadings; shrinkage factor.

I Calculate ultimate cumulative loss and loss reserve estimates.

I Construct prediction interval using nonparametric bootstrap.
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Point Forecast Samples

(a) Incremental Loss Ratios (b) Cumulative Loss Ratios

Figure: Number of PCA factors: 3; solid curves: shrinkage parameter = 0; dashed
curves: shrinkage parameter = 0.08
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Conclusion

I Application of statistical learning method to traditional insurance data.

I Find different development pattern in company covariates and across
historical periods.

I Propose loss reserving model based on nonparametric functional forecast.
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Appendix: Loss Triangle

Development Lag

Accident Year 0 1 2 3 4 5 6 7 8 9

1999 2739 3942 4515 4988 5429 5418 5421 5430 5463 5463

2000 1964 3019 3407 3816 3969 4061 4062 4134 4212

2001 1813 2880 3368 3888 3900 3934 3943 3954

2002 1309 2121 2648 2811 2811 2830 2893

2003 961 1558 1765 1816 1846 1876

2004 916 1223 1254 1426 1663

2005 790 1221 1290 1290

2006 849 1354 1476

2007 874 1171

2008 792

Table: Sample cumulative paid losses triangle in calendar year 2008

Back to slides
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Appendix: Medical Data with Delayed Reporting Back to slides

Figure: Number of AIDS reported in England and Wales at the end of 19921
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Appendix: Data Preprocessing

Data and prepocessing

I Company level triangles in workers’ compensation line from 1996 to 2008.

I At least $1 million net premium earned (NPE) in every accident year.

I The highest NPE is at most 10 times more than the lowest NPE.

I Take the fully developed accident year (top row).
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Appendix: Data Description and Preprocessing

Company Covariates Data (SNL)

I Business focus: commercial vs personal.

I Capital structure: stock vs mutual.

I Geographical focus: Northeast, South, Midwest, West, National.

I Remove NAs.
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Appendix: Additional Figures
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