Risk Budgeting Portfolios from Simulations

Rodrigo Targino¹

School of Applied Mathematics (EMAp), Fundação Getulio Vargas (FGV)

16/Jun/2021

¹Joint work with Silvana Pesenti (UoT) and Bernardo Costa (UFRJ)

Introduction

- An investment concept used in industry, e.g., by pension funds, is risk budgeting portfolios (RBP)
 - RBP: diversified portfolios on the level of the risk contribution of each asset
 - risk contribution: the added risk of marginally increasing the portfolio's position in that asset
- Our contribution: to use stochastic optimization to construct RBPs based on a generic risk measure and simulations from the returns.

The setup

• At time t = 0:

- Assets prices: $oldsymbol{p}=(p_1,\ldots,p_d)$
- The investor holds: *a_i* shares of asset *i*
- Portfolio value: $v(\mathbf{a}) = \mathbf{a}^{\mathsf{T}} \mathbf{p}$

At time t = 1:

- Assets prices: $\boldsymbol{P} = (P_1, \ldots, P_d)$
- The investor holds: *a_i* shares of asset *i*
- Portfolio value: $V(a) = a^{\mathsf{T}} P$

• Portfolio loss: $L(\mathbf{a}) = -[V(\mathbf{a}) - v(\mathbf{a})] = \sum_{i=1}^{d} a_i L_i$

- *i*-th asset loss: $L_i = -(P_i - p_i)$

lnitial endowment: v_0 (dollars) at time t = 0.

Marginal Risk and Risk Contribution

• Marginal risk of asset *i* (with coherent risk measure ρ)

$$\mathcal{MR}_i(\boldsymbol{a}) = \frac{\partial}{\partial \boldsymbol{a}_i} \rho(\boldsymbol{a}^{\mathsf{T}} \boldsymbol{L})$$

Risk contribution of asset i

$$\mathcal{RC}_i(\mathbf{a}) = a_i \, \mathcal{MR}_i(\mathbf{a})$$

For a portfolio \boldsymbol{a} and a risk measure ρ , it holds

$$\rho(L(\boldsymbol{a})) = \sum_{i=1}^{d} a_i \mathcal{MR}_i(\boldsymbol{a}) = \sum_{i=1}^{d} \mathcal{RC}_i(\boldsymbol{a}).$$

The Risk Budgeting Portfolio

- The investor has a risk appetite B^{\dagger} split as $B^{\dagger} = \sum_{i=1}^{d} B_i$
- For a risk budget $\boldsymbol{B} = (B_1, \dots, B_d)$ the RB portfolio satisfies

$$B^{\dagger} =
ho(L(\boldsymbol{a}))$$
 and $B_i \, \mathcal{RC}_j(\boldsymbol{a}) = B_j \, \mathcal{RC}_i(\boldsymbol{a})$

Proposition (RB portfolio)

The RB portfolio's weights are the solution to

$$\mathbf{a}^* := \operatorname{argmin}_{\mathbf{a}}
ho(L(\mathbf{a})), \ \operatorname{subject} \ \operatorname{to} \quad \sum_{i=1}^d B_i \log(a_i) \ge 0,$$

where the a_i are implicitly constraint to be strictly positive, so that the log is well-defined.

The Risk Budgeting Portfolio

- The investor has a risk appetite B^{\dagger} split as $B^{\dagger} = \sum_{i=1}^{d} B_i$
- For a risk budget $\boldsymbol{B} = (B_1, \dots, B_d)$ the RB portfolio satisfies

$$B^{\dagger}=
ho(L(oldsymbol{a}))$$
 and $B_{i}\,\mathcal{RC}_{j}(oldsymbol{a})=B_{j}\,\mathcal{RC}_{i}(oldsymbol{a})$

With simulated returns' scenarios, we can estimate

 $\hat{\rho}(L(a)) \approx \rho(L(a))$

and use the Sample Average Approximation method

Proposition (SAA-RB portfolio)

The SAA-RB portfolio's weights are the solution to

$$\mathbf{a}^* := \operatorname{argmin}_{\mathbf{a}} \hat{\mathbf{\rho}}(L(\mathbf{a})), \ \operatorname{subject} \ \operatorname{to} \quad \sum_{i=1}^d B_i \log(a_i) \geq 0,$$

where the a_i are implicitly constraint to be strictly positive, so that the log is well-defined.

Ticker	Name	Asset class	RB weight
SPY	SPDR S&P 500 ETF	Equities	2
MDY	SPDR S&P MidCap 400 ETF	Equities	1
VB	Vanguard Small-Cap ETF	Equities	1
GLD	SPDR Gold Shares	Commodities	2
DBC	PowerShares DB Comm. Tracking ETF	Commodities	1
DBA	PowerShares DB Agriculture ETF	Commodities	1
IEF	iShares 7–10 year Treasury Bond	Bonds	2
AGG	iShares Core U.S. Aggregate Bond	Bonds	1
TIP	iShares TIPS Bond	Bonds	1

2008-01-04 / 2020-12-30

2008-01-04 2009-09-24 2011-06-15 2013-03-08 2014-11-25 2016-08-17 2018-05-09 2020-01-30

Figure: ■ SPY, ■ MDY, ■ VB, ■ GLD, ■ DBC, ■ DBA, ■ IEF, ■ AGG, ■ TIP

	Vol.	Return	Sharpe	VaR _{5%}	Drawdown
grp	5.72%	3.12%	0.545	-0.53%	-17.26%
gmv	5.96%	2.68%	0.450	-0.47%	-18.17%
ew	11.07%	5.11%	0.462	-1.00%	-30.58%
rp095	5.06%	2.71%	0.536	-0.47%	-15.86%

