Structural sensitivity effects

Giovanni Rabitti

Department of Actuarial Mathematics and Statistics, Heriot-Watt University

Ongoing work with Emanuele Borgonovo (Bocconi University) and Elmar Plischke (TU Clausthal)

Motivation

- Several importance measures have been defined to understand the structure of complex models, for instance:
 - Moment-independent measures (Borgonovo, 2007);
 - High-dimensional model representation (Li et al., 2010);
 - Shapley values (Owen, 2014);
 - Stress-based indices (Pesenti, Millossovich and Tsanakas, 2019)
- However, most indices include the impact of both model structure and input dependence.
 - Consider the model

$$f(X_1, X_2) = X_1 \cdot X_2$$

with $corr(X_2, X_3) \neq 0$.

- $Imp(X_3) \neq 0$ but f does not contain X_3 .
- We want to consider indices for the structural contribution of inputs.

Structural and correlative sensitivity indices (Li et al., 2010)

• Consider the finite hierarchical expansion of Y = f(X) as

$$f(X) = \sum_{u \subseteq N} f_u(X_u) = \sum_{i=1}^d f_i(X_i) + \sum_{i < j} f_{i,j}(X_{i,j}) + \dots + f_N(X_N),$$

where X_u are the components of X indexed by $u \subseteq N = \{1, 2, ..., d\}.$

The covariance decomposition of the variance of the output is

$$\mathbb{V}[Y] = \sum_{\emptyset \neq u \subseteq N} \left[\mathbb{V}[f_u(X_u)] + \operatorname{Cov}\left(f_u(X_u), \sum_{\emptyset \neq v \subseteq N, v \neq u} f_v(X_v)\right) \right]$$
$$= \sum_{\neq u \in N} [V_u + V_u^c]$$

where V_u is the structural and V_u^c the correlative contribution.

Example: Linear Gaussian model

Consider the linear Gaussian model

$$Y = 2X_1 + 3X_2$$

where the inputs have a standard multivariate normal distribution with correlation coefficient ρ .

ρ	$\mathbb{V}[Y]$	V_1	V_1^c	V_2	V_2^c	<i>V</i> _{1,2}	<i>V</i> ^c _{1,2}
0.7	21.4	4	12.81	9	10.36	0	-14.77
0	13	4	0	9	0	0	0
-0.7	4.6	4	-3.99	9	-6.44	0	2.03

Table 1: Correlative and structural terms of the variance decomposition for the example. (Borgonovo, Plischke, R., 202+)

U.S. airlines costs data

Figure 1: From Borgonovo, Plischke, R. (202+)

Structural total effects

Definition

We define the structural total importance index as

$$T_u = \sum_{v: v \cap u \neq \emptyset} V_v$$

for all input groups $u \subseteq N$.

Theorem

A consistent estimator of T_u is

$$T_u = \frac{1}{2} \mathbb{E} \left[\phi_u^{X^0 \to X^!} \right]^2$$

where $\phi_u^{X^0 \to X^!}$ is the term of the finite-change decomposition

$$f(X^{1}) - f(X^{0}) = \sum_{i=1}^{d} \phi_{i}^{X^{0} \to X^{1}} + \sum_{i < j} \phi_{i,j}^{X^{0} \to X^{1}} + \dots + \phi_{N}^{X^{0} \to X^{1}}.$$

Variable Annuities Dataset (Gan, Valdez, 2017)

