MODELLING CREDIT STRUCTURES AND SECURITISATIONS WITH DATA SCIENCE

Insurance Data Science Conference 16-18 June 2021

Fernando MIERZEJEWSKI PhD – Non-Life Risk Officer AG Insurance

Insurance Data Science Conference 2021

Global Financial Crisis 2008

- -
- The 2008 financial crisis has been described as a generalised and coordinated event of credit-default, resulting from the combined effect of two separate shocks:
 - A shock of increasing uncertainty about the valuations and disclusers of structured products, and
 - A shock of increasing deterioration in the credit ratings of the tranches of funding structures and securitisations.
- During the crisis episode, credit rating agencies were compelled to make abrupt and massive downgrading.
 - Thus creating confusion among investors, who tended to assume that the credit standing of structured products was as stable as traditional fixed-income instruments.
- Criticism of structured finance has revolved around its potential to cause massive credit delinquency.

Global Financial Crisis 2008

2

The 2008 financial crisis has been described as a generalised and coordinated event of credit-default, resulting from the combined effect of two separate shocks:
 A shock of increasing uncertainty about the valuations and disclusers of structured products, and
 A shock of increasing deterioration in the credit ratings
 Credit rating models strongly dependent on QUALITATIVE assessment.
 Data Science can be used to improve/correct expert qualitative assessment.

stable as traditional fixed-income instruments.

Criticism of structured finance has revolved around its potential to cause massive credit delinquency.

Credit-Default Obligations

- 3
- Constant proportion debt obligations (CPDO) and collateralised default obligations (CDO) are credit structures guaranteeing a (relatively high) level of portfolio returns at the end of a given investment horizon.
 - Payments are expressed as cash flows referring to some portfolio of relatively highly profitable/risky assets (typically, a credit default swaps index, CDX).
 - Proceeds are maintained in a cash deposit, as collateral for the long assets position.
- Leverage is dynamically adjusted in order to ensure that the value of assets minus liabilities is always positive.
 - Leverage is increased in the event of incurring in portfolio losses.
- Default occurs when leverage reaches the maximum level determined at inception.

Debt structuring process

Mortgage Market Flows

5

Source: IMF Global Financial Stability Report, Oct. 2007.

Data requirements

Data required by credit rating agencies before inception:

Loan-level data requirements:

- Credit standing of borrowers and originators.
- Type and level of currency.
- Original and current outstanding balances.
- Loan-to-value ratios.
- Appraisal value of collateral (properties).
- Type (fixed/floating) and level of interest rates.
- Original and remaining term to maturity.

Historical data – portfolio evolution by cohorts:

- Historical yields & balances.
- Historical prepayment rates.
- Portfolio delinquencies.
- Portfolio defaults.
- Portfolio recoveries.

Data requirements

7

Data required by credit rating agencies before inception:

- Loan-le require
 - Credit and or
 - Type aOrigina
 - outsta
 - Loan-t
 - Apprai (prope
 Type (of inte
 - Origina maturi

- The provision of data is one of the most challenging aspects of debt structuring.
 - It brings on the need of developing & maintaining a complex IT platform.
 - Such infrastructure can be used by SPVs for the management of structured debt until maturity.
 - It can be used, in particular, for the implementation of a neural network reviewing/improving the model estimations of PD rates & credit ratings.

es.

Model specification

- Traditional statistical methodologies:
 - Linear discriminant analysis (LDA).
 - Logistic regression (LOGIT).
 - Univariate & multivariate models.
- Other:
 - Decision trees.
 - Operational research.
 - Evolutionary approaches.
 - □ Fuzzy logic.

 Option-based framework (geometric Brownian motion).

$$\frac{dS_t}{S_t} = (r_t + \rho_t) \cdot dt + \sigma \cdot dW$$

 ρ_t : risk premium

 Default occurs when the level of portfolio losses surpasses a given threshold L*.

$$\frac{\partial PD}{\partial L^*} > 0, \frac{\partial PD}{\partial \sigma} > 0, \frac{\partial PD}{\partial r} > 0, \frac{\partial PD}{\partial \rho} < 0$$

- Two main categories:
 - Exogenous default-trigger (L*).
 - Endogenous default-trigger (L*).

Neural network framework

- Input layer:
 - Input neurons receive and process the incoming stimuli as stipulated by some transfer function.
 - Results are thus transferred to the neurons in the middle layers.
- Middle layers:
 - Results produced in the middle layers are adjusted by weights representing the connections between consecutive neurons.
 - Every neuron is described by a transition function and a threshold.
 - The threshold is the minimum value that activates the receiver neuron.

Reinforced learning:

- Reinforced learning trains the network by introducing prizes and penalties as a function of the network response.
 - Prices and penalties are used to modify the weights.
- Reinforced learning is applied to train adaptive systems that perform tasks composed of a sequence of actions.
 - The final outcome is the result of the sequence of actions.
 - The contribution of every single action is thus evaluated depending on the impact on the resulting action chain.

Multi-layer perceptron network

Figure 3. Perceptron network.

Source: Pacelli, V. & Azzollini, M. (2011).

Multi-layer perceptron network

11

Back Propagation learning algorithm.

- The network learns by means of a series of attempts to estimate the weights linking the input to the output results – through a series of hidden layers of neurons.
 - Starts with random weights affecting the neurons in the input layer.
 - Weights in the intermediate and output layers are progressively adjusted.
 - At every iterative step, the error between the network result and the desired/ observed output is minimised.

Output.

- Internal credit score categories.
 - SAFE;
 - VULNERABLE;
 - RISK.
- Credit score categories as defined by the different credit rating agencies,
 - Standard & Poor's (S&P);
 - MOODY's;
 - FITCH Group.

Network output

Rating	Safe	Vulnerable	Risk	
Safe	84.2%	15.8%	0%	
Vulnerable	23.1%	73.9%	3.0%	
Risk	15.2%	50.0%	34.8%	

Source: Pacelli, V. & Azzollini, M. (2011).

Network output

13

EXHIBIT 3.3 Portfolio defaults, historic basis

			and the local distance of									- These descents re-						
Percentage Defaulted	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2006/Q4 2007/O1	0.00% 0.00%	0.00%	0.00%	0.10%	0.25%	0.68%	1.61%	3.06%	4.98%	5.48%	6.46%	7.94%	8.94%	9.20%	9.50%	9.80%	10.00%	10.10%
2007/Q2	0.00%	0.00%	0.00%	0.04%	0.32%	0.90%	2.00%	2.45%	3.32%	4.60%	5.30%	6.69%	7.70%	8.60%	9.38%	9.70%	10.40%	
2007/Q3	0.00%	0.00%	0.00%	0.07%	0.46%	1.25%	1.73%	2.66%	4.09%	5.99%	6.49%	7.34%	8.51%	10.01%	10.26%			
2007/Q4	0.00%	0.00%	0.00%	0.11%	0.51%	0.99%	2.00%	3.62%	5.79%	6.31%	7.18%	8.45%	10.04%	10.38%				
2008/Q1	0.00%	0.00%	0.00%	0.09%	0.51%	1.44%	2.93%	4.00%	5.62%	6.66%	8.16%	9.10%	9.70%					
2008/Q2	0.00%	0.00%	0.00%	0.06%	0.53%	1.58%	3.27%	3.98%	5.25%	7.01%	8.30%	9.00%						
2008/Q3	0.00%	0.00%	0.00%	0.14%	1.00%	3.70%	5.50%	7.00%	8.70%	9.70%	10.50%							
2008/Q4	0.00%	0.00%	0.00%	0.10%	1.20%	3.50%	5.00%	7.30%	8.40%	9.20%								
2009/Q1	0.00%	0.00%	0.00%	0.13%	0.90%	1.76%	3.00%	5.20%	6.40%									
2009/Q2	0.00%	0.00%	0.00%	0.11%	0.67%	1.86%	3.20%	4.69%										
2009/Q3	0.00%	0.00%	0.01%	0.12%	0.83%	1.50%	3.25%											
2009/Q4	0.00%	0.00%	0.00%	0.14%	0.75%	1.63%												
2010/Q1	0.00%	0.00%	0.00%	0.06%	0.58%													
2010/Q2	0.00%	0.00%	0.00%	0.08%														
2010/Q3	0.00%	0.00%	0.00%															
2010/Q4	0.00%	0.00%																
2011/Q1	0.00%																	

Source: Baig & Choudhry (2013).

Conclusions

- 14
- Data science provides a theoretical framework for the management of credit-default structures.
- Estimations of the default probabilities of the underlying loans can be periodically reassessed – thus reflecting changes in:
 - Portfolio management decisions buying and selling orders of loans;
 - Model & parameter misspecification;
 - Market conditions.
- Eventually, the implementation of neural networks leads to the automation and progressive improvement of expert knowledge – qualitative assessment.

References

15

- Addo, Guegan & Hassani (2018). Credit Risk Analysis Using Machine and Deep Learning Models. *Risks* 2018, 6, 38.
- **Baig & Choudhry (2013)**. The Mechanics of Securitization. Wiley.
- International Monetary Fund (2007). Financial Market Turbulence – Causes, Consequences, and Policies. Global Financial Stability Report. Oct. 2007.
- Lancaster, Schultz & Fabozzi (2008). Structured Products and Related Credit Derivatives. Wiley.
- Pacelli, V. & Azzollini, M. (2011). An Artificial Neural Network Approach for Credit Risk Management. *Journal of Intelligent Learning Systems and Applications* 2011(3), pp. 103-112.
- Tarashev (2005). An Empirical Evaluation of Structural Credit Risk Models. BIS Working Paper No. 179.