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Introduction



The problem

Propose a simulation based method to evaluate the distribution of future annuity

values −→ avoid nested simulations (very time-consuming).

Future annuity values are uncertain:

- Unknown future mortality (and interest/inflation) rates;

- Impact on liabilities for insurers/pension plans (Oppers et al., 2012);

- Impact on dependence between lifetimes (Alai et al., 2013, 2015 and Alai, 2019).
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State of the art and proposed methodology

State of the art

- Cairns (2011), Dowd et al. (2011) and Liu (2013): Taylor approximation-based

approach −→ requires multiple simulation sets;

- Denuit (2008): comonotonic approximations.

Proposal

- Use the well-known LSMC method (Longstaff et al., 2001, Boyer et al., 2013, 2017);

- Flexible to accommodate any (Markov) mortality model;

- Extend to more general situations (see later).
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The mathematical framework



Annuity contract

Future value at T of an annuity contract with unitary benefits issued to an individual

aged x+ T at the future date T as

ax+T (T ) =

ω−x−T∑
i=1

B(T, T + i)E
[
e−

∑i−1
h=0 mx+T+h;T+h | zT

]
, (1)

where

- ω is the ultimate age;

- B(T, T + i) is the i-th years discount factor prevailing at time T > 0;

- mx;t is the central death rate at age x in year t;

- zT is the state-vector of the relevant risk factors.
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Proposed algorithm

Steps

1. Simulate z
(j)
t → m

(j)
x;t, t = 1, . . . , T and j = 1, . . . , n;

2. For each outer scenario, projecting n̄� n inner paths of the risk factors (e.g., n̄ = 1);

3. Compute for each outer scenario the corresponding cash-flows generated along each

inner trajectory,
{
A(j)

}
j=1,...,n

;

4. Regress {
A(j)

}
j

on
{
φ
(
z
(j)
T

)}
j

where φ = (φ1, . . . , φp) is a vector of basis functions;

5. Compute

â
(j)
x+T (T ) =

p∑
k=1

β̂kφk

(
z
(j)
T

)
, j = 1, . . . , n.
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R functions



Usage

• Description

- It implements the LSMC method for valuing future annuity contracts under stochastic

mortality and interest rates framework.

• Usage

- calculate.Annuity(mortRates, T, x, r = 0, close.table = TRUE,

omega = 120, pred = NULL, basisFun = c("Monomials", "Hermite",

"Laguerre", "Chebyshev"), ordPolyn = 1, standardize = TRUE)

• Arguments

- mortRates: matrix/three-dimensional array, the future simulated mortality rates. It can

be an object of class ”simStMoMo”.

- T: integer value, the future time horizon.

- x: integer value, the individual’s age at the future date T.

- r: constant/vector/matrix with future levels of interest rates.

- . . .
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The class ”sim.Annuity”

The class of the returned object is of type ”sim.Annuity” which contains the

following information:

- annuity: a vector containing the simulated future annuity values;

- pred: a matrix containing the predictors exploited in the regression;

- basis: a string indicating the type of basis functions;

- . . . .

Methods: print, summary, mean, quantile, hist, etc.
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R code example



The data

• M7fit: fitted Poisson M7 stochastic mortality model (StMoMo package) on

- Italian male population 1965− 2016;

- Ages 35− 90;

• M7sim: object of class ”simStMoMo”

- n = 20000 simulated trajectories;

• CIRrates: simulated future interest rates level (CIR process)

- Parameters: r0 = 0.04, α = 0.2, r̄ = 0.04, and σr = 0.1;
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Results

> Annuity_LSMC <- calculate.Annuity(mortRates = M7sim, T = 5, x = 65,

ordPolyn = 1, r = CIRrates, pred = NULL, basisFun = "Monomials",

close.table = FALSE)

> print(Annuity_LSMC)

Annuity values for an individual aged 65 at the future time horizon 5

Contract Information

Interest rate: stochastic

Basis Functions: Monomials

Number of Basis Functions: 5

Number of Simulations: 20000
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Results II

> summary(Annuity_LSMC)

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.311 12.005 12.968 12.725 13.693 16.547

> quantile(Annuity_LSMC, p = c(0.005, 0.995))

0.5% 99.5%

8.211256 14.883423

> hist(Annuity_LSMC)
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Results III

Annuity Value Distribution
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Thank you!
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