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INTRODUCTION




THE PROBLEM

Propose a simulation based method to evaluate the distribution of future annuity
values — avoid nested simulations (very time-consuming).

Future annuity values are uncertain:

- Unknown future mortality (and interest/inflation) rates;
- Impact on liabilities for insurers/pension plans (Oppers et al., 2012);

- Impact on dependence between lifetimes (Alai et al., 2013, 2015 and Alai, 2019).



STATE OF THE ART AND PROPOSED METHODOLOGY

State of the art

- Cairns (2011), Dowd et al. (2011) and Liu (2013): Taylor approximation-based
approach — requires multiple simulation sets;

- Denuit (2008): comonotonic approximations.

Proposal
- Use the well-known LSMC method (Longstaff et al., 2001, Boyer et al., 2013, 2017);
- Flexible to accommodate any (Markov) mortality model;

- Extend to more general situations (see later).



THE MATHEMATICAL FRAMEWORK




ANNUITY CONTRACT

Future value at T" of an annuity contract with unitary benefits issued to an individual
aged = + T at the future date T as

w—z—T
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i=1

7], (1)
where

- w is the ultimate age;
- B(T,T + 1) is the i-th years discount factor prevailing at time 7" > 0;
- My is the central death rate at age x in year ¢;

- zr is the state-vector of the relevant risk factors.



PROPOSED ALGORITHM

Steps

1. Simulate z(j)—>m§f;z7 t=1,....,7 and j=1,...,n;

?

. For each outer scenario, projecting n < n inner paths of the risk factors (e.g., n = 1);

. Compute for each outer scenario the corresponding cash-flows generated along each
inner trajectory, {A(J)}j_l

_ )
)

4. Regress
() ()
{49} on {2 (=)},
where ¢ = (¢1,...,¢p) is a vector of basis functions;
5. Compute

. P ,
d;JlT(T) = Buow (Z?) , j=1,...,n.
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R FUNCTIONS




e Description
- It implements the LSMC method for valuing future annuity contracts under stochastic

mortality and interest rates framework.
e Usage
- calculate.Annuity(mortRates, T, x, r = 0, close.table TRUE,
omega = 120, pred = NULL, basisFun = c("Monomials", "Hermite",

"Laguerre", "Chebyshev"), ordPolyn = 1, standardize = TRUE)

e Arguments
- mortRates: matrix/three-dimensional array, the future simulated mortality rates. It can
be an object of class " simStMoMo" .
- T: integer value, the future time horizon.
x: integer value, the individual's age at the future date T.
T: constant/vector/matrix with future levels of interest rates.



THE CLASS "SIM.ANNUITY"

The class of the returned object is of type "sim.Annuity” which contains the
following information:

annuity: a vector containing the simulated future annuity values;
- pred: a matrix containing the predictors exploited in the regression;
- basis: a string indicating the type of basis functions;

Methods: print, summary, mean, quantile, hist, etc.



R CODE EXAMPLE




THE DATA

e M7fit: fitted Poisson M7 stochastic mortality model (StMoMo package) on
- Italian male population 1965 — 2016;
- Ages 35 — 90;

e M7sim: object of class " simStMoMo"

- n = 20000 simulated trajectories;

e CIRrates: simulated future interest rates level (CIR process)

- Parameters: 19 = 0.04, o = 0.2, 7 = 0.04, and o, = 0.1;



RESULTS

> Annuity_LSMC <- calculate.Annuity(mortRates = M7sim, T = 5, x = 65,
ordPolyn = 1, r = CIRrates, pred = NULL, basisFun = "Monomials",
close.table = FALSE)

> print (Annuity_LSMC)

Annuity values for an individual aged 65 at the future time horizon 5
Contract Information

Interest rate: stochastic

Basis Functions: Monomials

Number of Basis Functions: 5

Number of Simulations: 20000



ResuLTs Il

> summary (Annuity_LSMC)

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.311 12.005 12.968 12.725 13.693 16.547

> quantile(Annuity_LSMC, p = c(0.005, 0.995))

0.5% 99.5%
8.211256 14.883423

> hist (Annuity_LSMC)

10



ResuLTs |1

Annuity Value Distribution

o ] ______
o |
o
= _
£ n
S < -
QO o |
o -
C)_ —
o | | | | | |
6 8 10 12 14 16
Values

Individual aged 65 at time 5 1



Thank youl!
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