Deep Hedging of Long-Term Financial Derivatives

Alexandre Carbonneau, PhD candidate Concordia University

IDSC 2021

June 16, 2021

Carbonneau

Deep Hedging of Long-Term Derivatives

≧▶ ◀ ≧▶ ≧ ∽ �. June 16, 2021 1 / 11

▶ < ∃ ▶</p>

Insurance: Mathematics and Economics 99 (2021) 327-340

- Topic: Optimal hedging of **long-term** European financial derivatives with deep reinforcement learning.
- Implementation: github.com/alexandrecarbonneau.

< □ > < 同 > < 回 > < 回 > < 回 >

Motivation

This paper studies the problem of global hedging **very long-term European derivatives** (many years) with dynamic hedging.

- Such long maturity derivatives are analogous, under some assumptions, **to financial guarantees** sold with equity-linked insurance products.
- This study examines exclusively the mitigation of **financial risk** exposure.

Global risk minimization

For $\delta := \{\delta_n\}_{n=0}^N$ assets positions at each time-step, S_N the underlying price of a European derivative of payoff $\Phi(S_N, Z_N)$ and portfolio value V_N^{δ} :

$$\delta^{\star} = \arg\min_{\delta} \mathbb{E} \left[\mathcal{L}(\Phi(S_N, Z_N) - V_N^{\delta}) \right], \qquad (1)$$

where $\mathcal{L}:\mathbb{R}\to\mathbb{R}$ is the penalty or loss function.

Global risk minimization

For $\delta := \{\delta_n\}_{n=0}^N$ assets positions at each time-step, S_N the underlying price of a European derivative of payoff $\Phi(S_N, Z_N)$ and portfolio value V_N^{δ} :

$$\delta^{\star} = \arg\min_{\delta} \mathbb{E} \left[\mathcal{L}(\Phi(S_N, Z_N) - V_N^{\delta}) \right], \qquad (1)$$

where $\mathcal{L}:\mathbb{R}\to\mathbb{R}$ is the penalty or loss function.

1) Mean-square error (MSE): $\mathcal{L}(x) = x^2$.

Global risk minimization

For $\delta := \{\delta_n\}_{n=0}^N$ assets positions at each time-step, S_N the underlying price of a European derivative of payoff $\Phi(S_N, Z_N)$ and portfolio value V_N^{δ} :

$$\delta^{\star} = \arg\min_{\delta} \mathbb{E} \left[\mathcal{L}(\Phi(S_N, Z_N) - V_N^{\delta}) \right], \qquad (1)$$

where $\mathcal{L} : \mathbb{R} \to \mathbb{R}$ is the penalty or loss function.

- 1) Mean-square error (MSE): $\mathcal{L}(x) = x^2$.
 - Very popular within the global hedging literature.
 - Downside: Penalizes equally gains and losses.

Global risk minimization

For $\delta := \{\delta_n\}_{n=0}^N$ assets positions at each time-step, S_N the underlying price of a European derivative of payoff $\Phi(S_N, Z_N)$ and portfolio value V_N^{δ} :

$$\delta^{\star} = \arg\min_{\delta} \mathbb{E} \left[\mathcal{L}(\Phi(S_N, Z_N) - V_N^{\delta}) \right], \qquad (1)$$

where $\mathcal{L} : \mathbb{R} \to \mathbb{R}$ is the penalty or loss function.

- 1) Mean-square error (MSE): $\mathcal{L}(x) = x^2$.
 - Very popular within the global hedging literature.
 - Downside: Penalizes equally gains and losses.

2) Semi-mean-square error (SMSE): $\mathcal{L}(x) = x^2 \mathbb{1}_{\{x>0\}}$.

Global risk minimization

For $\delta := \{\delta_n\}_{n=0}^N$ assets positions at each time-step, S_N the underlying price of a European derivative of payoff $\Phi(S_N, Z_N)$ and portfolio value V_N^{δ} :

$$\delta^{\star} = \arg\min_{\delta} \mathbb{E} \left[\mathcal{L}(\Phi(S_N, Z_N) - V_N^{\delta}) \right], \qquad (1)$$

where $\mathcal{L} : \mathbb{R} \to \mathbb{R}$ is the penalty or loss function.

- 1) Mean-square error (MSE): $\mathcal{L}(x) = x^2$.
 - Very popular within the global hedging literature.
 - Downside: Penalizes equally gains and losses.
- 2) Semi-mean-square error (SMSE): $\mathcal{L}(x) = x^2 \mathbb{1}_{\{x>0\}}$.
 - Penalizes only hedging losses, not gains.

Carbonneau

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Contributions of the paper

- 1) Perform extensive Monte Carlo experiments for the risk mitigation of long-term lookback options with global hedging.
- 2) Provide qualitative insights into specific characteristics of the optimized long-term global policies (i.e. neural networks).

Deep hedging

• For several popular (Markov) dynamics of the traded assets, the optimal policy has the form

$$\delta_{n+1}^{\star} = f(n, V_n, S_n, Z_n, \mathcal{I}_n)$$

for some function f and \mathcal{I}_n containing additional relevant information.

Deep hedging

• For several popular (Markov) dynamics of the traded assets, the optimal policy has the form

$$\delta_{n+1}^{\star} = f(n, V_n, S_n, Z_n, \mathcal{I}_n)$$

for some function f and \mathcal{I}_n containing additional relevant information.

• Approximate f with a neural network F_{θ} with parameters θ :

$$f(n, V_n, S_n, \mathcal{I}_n, Z_n) \approx \frac{F_{\theta}(n, V_n, S_n, \mathcal{I}_n, Z_n)}{(2)},$$

with the deep hedging algorithm of Buehler et al. (2019).

Deep hedging

• For several popular (Markov) dynamics of the traded assets, the optimal policy has the form

$$\delta_{n+1}^{\star} = f(n, V_n, S_n, Z_n, \mathcal{I}_n)$$

for some function f and I_n containing additional relevant information.

• Approximate f with a neural network F_{θ} with parameters θ :

$$f(n, V_n, S_n, \mathcal{I}_n, Z_n) \approx F_{\theta}(n, V_n, S_n, \mathcal{I}_n, Z_n),$$
(2)

with the deep hedging algorithm of Buehler et al. (2019).

• Optimization problem boils down to optimizing θ :

$$\min_{\delta} \mathbb{E} \left[\mathcal{L} \left(\Phi(S_N, Z_N) - V_N^{\delta} \right) \right] \approx \min_{\theta} \mathbb{E} \left[\mathcal{L} \left(\Phi(S_N, Z_N) - V_N^{\delta^{\theta}} \right) \right]$$
(3)

where δ^{θ} is to be understood as the output of F_{θ} , A_{θ} , A_{θ

Market setup

- Market setup considered is essentially the same as in Coleman et al. (2007).
- Lookback option to hedge with a time-to-maturity of 10 years with payoff $\Phi(S_N, Z_N) = \max(Z_N S_N, 0)$.
- Vanilla calls and puts used for hedging have a time-to-maturity of 1 year, are traded once and held until expiration.
- Merton Jump-Diffusion for underlying.

Global quadratic vs semi-quadratic - MJD

Table 6: Benchmarking of quadratic deep hedging and semi-quadratic deep hedging to hedgethe lookback option of T = 10 years under the MJD model.

Statistics	Mean	RMSE	$\operatorname{semi-RMSE}$	$\mathrm{VaR}_{0.95}$	$\mathrm{VaR}_{0.99}$	$\mathrm{CVaR}_{0.95}$	$\mathrm{CVaR}_{0.99}$
\mathcal{L}^{MSE}							
Stock (year)	-1.6	19.8	15.6	32.3	66.4	54.5	95.4
Stock (month)	0.2	11.2	9.4	15.7	42.8	32.6	64.6
Two options	0.0	5.2	3.8	6.7	15.4	12.7	25.1
Six options	-0.1	1.3	0.9	1.4	3.6	2.9	6.2
\mathcal{L}^{SMSE}							
Stock (year)	-35.2	49.7	6.7	11.4	31.7	24.6	47.7
Stock (month)	-22.8	33.8	4.2	6.5	18.3	14.3	29.6
Two options	-5.9	11.2	1.7	2.2	7.1	5.5	12.2
Six options	-1.3	3.1	0.5	0.3	1.4	1.1	2.9

A D N A B N A B N A B N

Global quadratic vs semi-quadratic - MJD

Table 6: Benchmarking of quadratic deep hedging and semi-quadratic deep hedging to hedgethe lookback option of T = 10 years under the MJD model.

Statistics	Mean	RMSE	$\operatorname{semi-RMSE}$	$\mathrm{VaR}_{0.95}$	$VaR_{0.99}$	$\mathrm{CVaR}_{0.95}$	$\mathrm{CVaR}_{0.99}$
\mathcal{L}^{MSE}							
Stock (year)	-1.6	19.8	15.6	32.3	66.4	54.5	95.4
Stock (month)	0.2	11.2	9.4	15.7	42.8	32.6	64.6
Two options	0.0	5.2	3.8	6.7	15.4	12.7	25.1
Six options	-0.1	1.3	0.9	1.4	3.6	2.9	6.2
\mathcal{L}^{SMSE}							
Stock (year)	-35.2	49.7	6.7	11.4	31.7	24.6	47.7
Stock (month)	-22.8	33.8	4.2	6.5	18.3	14.3	29.6
Two options	-5.9	11.2	1.7	2.2	7.1	5.5	12.2
Six options	-1.3	3.1	0.5	0.3	1.4	1.1	2.9

• Downside risk reduction improvement with \mathcal{L}^{SMSE} over \mathcal{L}^{MSE} ranges between 45% to 76%.

Carbonneau

< □ > < 同 > < 回 > < 回 > < 回 >

Global quadratic vs semi-quadratic - MJD

Table 6: Benchmarking of quadratic deep hedging and semi-quadratic deep hedging to hedgethe lookback option of T = 10 years under the MJD model.

Statistics	Mean	RMSE	$\operatorname{semi-RMSE}$	$VaR_{0.95}$	$\mathrm{VaR}_{0.99}$	$\mathrm{CVaR}_{0.95}$	$\mathrm{CVaR}_{0.99}$
\mathcal{L}^{MSE}							
Stock (year)	-1.6	19.8	15.6	32.3	66.4	54.5	95.4
Stock (month)	0.2	11.2	9.4	15.7	42.8	32.6	64.6
Two options	0.0	5.2	3.8	6.7	15.4	12.7	25.1
Six options	-0.1	1.3	0.9	1.4	3.6	2.9	6.2
\mathcal{L}^{SMSE}							
Stock (year)	-35.2	49.7	6.7	11.4	31.7	24.6	47.7
Stock (month)	-22.8	33.8	4.2	6.5	18.3	14.3	29.6
Two options	-5.9	11.2	1.7	2.2	7.1	5.5	12.2
Six options	-1.3	3.1	0.5	0.3	1.4	1.1	2.9

- Downside risk reduction improvement with \mathcal{L}^{SMSE} over \mathcal{L}^{MSE} ranges between 45% to 76%.
- \bullet Hedging gains across all hedging instruments with \mathcal{L}^{SMSE}

Carbonneau

Benchmarking takeaway

With semi-quadratic global hedging:

- Tailor-made to match the financial objectives of hedgers.
 - Smallest downside risk metrics + significant hedging gains across all benchmarks.
- Conclusion: **should be prioritized** (when possible) over other dynamic hedging procedures considered in this study.

Conclusion

• Present a reinforcement learning approach relying on the class of deep hedging algorithms to hedge long-term European financial derivatives.

- Perform extensive benchmarking of global policies for long-term lookback put options over many different scenarios (e.g. hedging instruments and jump risk).
- Numerical results clearly demonstrate the vast superiority of non-quadratic global hedging.

 \rightarrow downside risk two to three times smaller than best benchmark.

 \rightarrow hedging gains on average.

<u> </u>	
1 24	nonnoou
V.dI	DOILINEAU

References

Buehler, H., Gonon, L., Teichmann, J., and Wood, B. (2019a). Deep hedging. *Quantitative Finance*, 19(8):1271-1291.

Carbonneau, A. (2021). Deep Hedging of Long-Term Financial Derivatives. *Insurance: Mathematics and Economics*, 99:327-340.

Coleman, T., Kim, Y., Li, Y., and Patron, M. (2007). Robustly hedging variable annuities with guarantees under jump and volatility risks. *Journal of Risk and Insurance*, 74(2):347-376.