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Introduction

Topic

Topic: Optimal hedging of long-term European financial derivatives
with deep reinforcement learning.

Implementation: github.com/alexandrecarbonneau.
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Introduction

Motivation

This paper studies the problem of global hedging very long-term
European derivatives (many years) with dynamic hedging.

Such long maturity derivatives are analogous, under some
assumptions, to financial guarantees sold with equity-linked
insurance products.

This study examines exclusively the mitigation of financial risk
exposure.
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Introduction

Global risk minimization

For δ := {δn}Nn=0 assets positions at each time-step, SN the underlying
price of a European derivative of payoff Φ(SN ,ZN) and portfolio value V δ

N :

δ? = arg min
δ

E
[
L(Φ(SN ,ZN)− V δ

N)
]
, (1)

where L : R→ R is the penalty or loss function.

1) Mean-square error (MSE): L(x) = x2.

Very popular within the global hedging literature.

Downside: Penalizes equally gains and losses.

2) Semi-mean-square error (SMSE): L(x) = x21{x>0}.

Penalizes only hedging losses, not gains.
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Introduction

Contributions of the paper

1) Perform extensive Monte Carlo experiments for the risk mitigation of
long-term lookback options with global hedging.

2) Provide qualitative insights into specific characteristics of the
optimized long-term global policies (i.e. neural networks).
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Introduction

Deep hedging

• For several popular (Markov) dynamics of the traded assets, the optimal
policy has the form

δ?n+1 = f (n,Vn,Sn,Zn, In)

for some function f and In containing additional relevant information.

• Approximate f with a neural network Fθ with parameters θ:

f (n,Vn,Sn, In,Zn) ≈ Fθ(n,Vn,Sn, In,Zn), (2)

with the deep hedging algorithm of Buehler et al. (2019).

• Optimization problem boils down to optimizing θ:

min
δ

E
[
L
(

Φ(SN ,ZN)− V δ
N

)]
≈ min

θ
E
[
L
(

Φ(SN ,ZN)− V δθ

N

)]
(3)

where δθ is to be understood as the output of Fθ.
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Numerical experiments

Market setup

Market setup considered is essentially the same as in Coleman et al.
(2007).

Lookback option to hedge with a time-to-maturity of 10 years with
payoff Φ(SN ,ZN) = max(ZN − SN , 0).

Vanilla calls and puts used for hedging have a time-to-maturity of 1
year, are traded once and held until expiration.

Merton Jump-Diffusion for underlying.
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Numerical experiments

Global quadratic vs semi-quadratic - MJD

Downside risk reduction improvement with LSMSE over LMSE ranges
between 45% to 76%.
Hedging gains across all hedging instruments with LSMSE.

Carbonneau Deep Hedging of Long-Term Derivatives June 16, 2021 8 / 11



Numerical experiments

Global quadratic vs semi-quadratic - MJD

Downside risk reduction improvement with LSMSE over LMSE ranges
between 45% to 76%.

Hedging gains across all hedging instruments with LSMSE.

Carbonneau Deep Hedging of Long-Term Derivatives June 16, 2021 8 / 11



Numerical experiments

Global quadratic vs semi-quadratic - MJD

Downside risk reduction improvement with LSMSE over LMSE ranges
between 45% to 76%.
Hedging gains across all hedging instruments with LSMSE.

Carbonneau Deep Hedging of Long-Term Derivatives June 16, 2021 8 / 11



Numerical experiments

Benchmarking takeaway

With semi-quadratic global hedging:

Tailor-made to match the financial objectives of hedgers.
I Smallest downside risk metrics + significant hedging gains across all

benchmarks.

Conclusion: should be prioritized (when possible) over other
dynamic hedging procedures considered in this study.
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Conclusion

Conclusion

Present a reinforcement learning approach relying on the class of deep
hedging algorithms to hedge long-term European financial derivatives.

Perform extensive benchmarking of global policies for long-term
lookback put options over many different scenarios (e.g. hedging
instruments and jump risk).

Numerical results clearly demonstrate the vast superiority of
non-quadratic global hedging.

→ downside risk two to three times smaller than best benchmark.

→ hedging gains on average.
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