Correcting Reporting Delays in Cyber Events at Industry Level

Seema Sangari (Presenter) **PhD Candidate Kennesaw State University**

SSangar1@students.Kennesaw.edu

linkedin.com/in/seemasangari

Dr. Eric Dallal **AIR Worldwide Verisk Cyber Solutions** **Scott Stransky AIR Worldwide Verisk Cyber Solutions**

©2021 AIR Worldwide

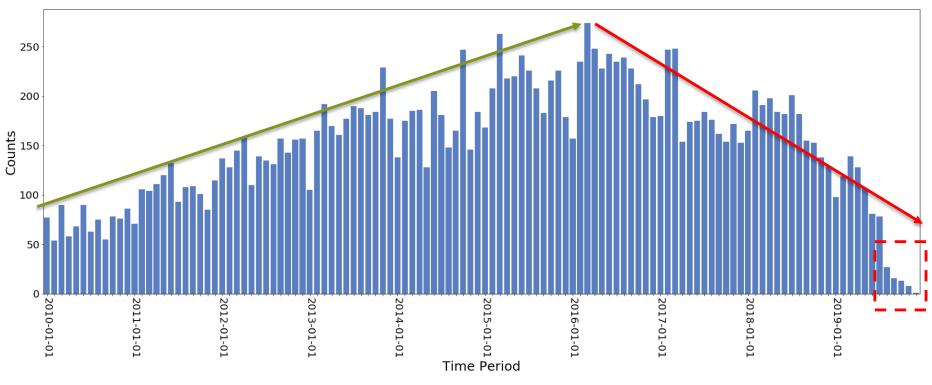
Outline

- Business Problem
- Solution in Development
- Key Take-aways

Business Problem

- Reporting Delays: Takes up to 10 years for the event to be entered into the database
- Cyber Models with such incomplete information would be questionable
- Business Problem: To correct for the false diminishing trend in counts due to reporting delays

Business Problem: Data


AIR Worldwide Proprietary data

When?		Where?	Who?
Incident Date	Reporting Date	Country	Industry

Business Problem: Monthly Cyber Event Counts (reported) US Finance and Insurance Industry

Solution in Development: Delay and Age

Delay:

Incident Date ≤ Reporting Date Incident Date Reporting Date Date

Age:

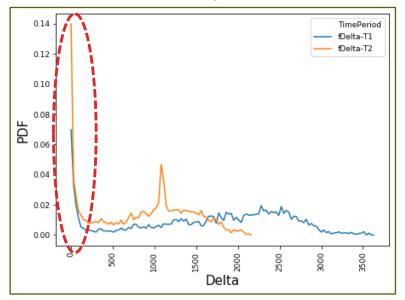
Incident Date ≤ Reporting Date ≤ Most Recent Reporting Date

```
Incident Most Recent Reporting Date
```


Solution in Development: Delay Distribution

Delay Distribution generated based on Delay Ratio

#Events with delay

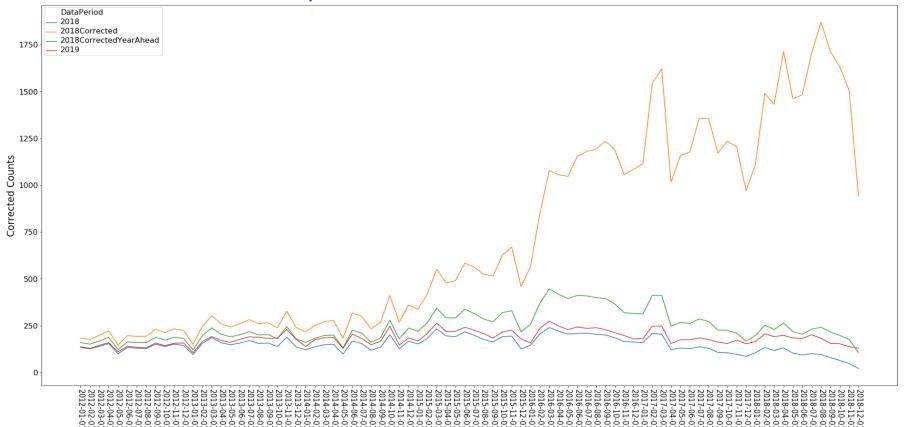

Estimated True #Events *where* $age \ge delay$

Solution Development: Problem with distribution generated from Delay ratio

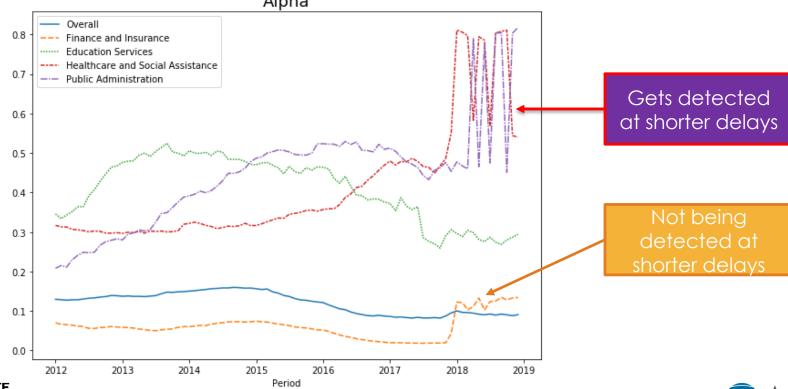
- Non-stationarity observed
- Delay Distribution does not estimate beyond maximum Delay


Modeled distribution is a mixture of an Exponential and a Normal distribution

CDF at
$$\delta$$
, $F_{\theta} = \alpha \left(F_{Exp}(\delta, 0, Scale) \right) + (1 - \alpha) \left(F_{N}(\delta, \mu, \sigma) \right)$


Solution in Development: Function Performance

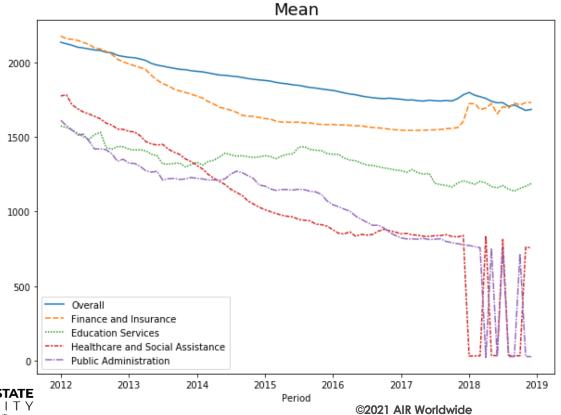
Solution in Development: Validation Plot



Key Take-away: Alpha - Comparison at Industry level

CDF at δ , $F_{\theta} = \alpha \left(F_{Exp}(\delta, 0, Scale) \right) + (1 - \alpha) \left(F_{N}(\delta, \mu, \sigma) \right)$ Alpha

©2021 AIR Worldwide



11

Key Take-away: Mean - Comparison at Industry level

CDF at
$$\delta$$
, $F_{\theta} = \alpha \left(F_{Exp}(\delta, 0, Scale) \right) + (1 - \alpha) \left(F_{N}(\delta, \mu, \sigma) \right)$

Key Take-away

In order to obtain credible cyber model

- Despite most recent cyber database, data requires debiasing
 - Reporting delays need to be addressed
- Each industry has its own modeled delay distribution
 - Different industries had large differences
- Better decision made with better data

Questions

Solution in Development: Optimization Function

Optimization Function

- 1. Compares empirical Delay Distribution with Modeled Delay Distribution up to maximum delay
- Compares Modeled Delay Distribution beyond maximum delay for two consecutive months
- 3. Penalizes negative delays

$$CDF \ at \ \delta, F_{\theta} = \alpha \left(F_{Exp}(\delta, 0, Scale) \right) + (1 - \alpha) \left(F_{N}(\delta, \mu, \sigma) \right)$$

$$\theta = (\alpha, Scale, \mu, \sigma)$$

$$\theta_{opt} = \underset{\theta = (a, Scale, \mu, \sigma)}{\operatorname{argmin}} \frac{1}{n} ||\log_{10} F_{\theta} - \log_{10} F_{\Delta}||^{2} + (F'_{\theta'} - F'_{\theta})^{2} + F_{N}^{2}(0, \mu, \sigma)$$

$$Truncated \ until \ \delta_{max} \qquad Beyond \ \delta_{max} \qquad Below \ \delta = 0$$

$$F_{\Delta} = Monthly \ Delay \ Distribution \ rolling \ over \ 2 - year \ window$$

$$F_{\theta} = F_{\theta} \ defined \ over \ (0, \infty)$$

Thanks

