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Mortality modeling

� Mortality rates indexed by Age and

Year: x = (xnag , x
n
yr )

� Raw deceased count Dn; Exposures E n;

Mid-Year Lives Ln

� Observed raw log-rates Y (xn) = log Dn

Ln

� Model Y (x) = f (x) + ε where

Var(ε(x)) = σ2(x) (additive noise)

� f (·) is the latent log-mortality surface
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Consider several popn's Y (`) simultaneously:

� Improve �tting

� Information fusion

� Joint forecasts

Desired model features:

� Good predictive power

� Uncertainty quanti�cation

� Interpretable covariance modeling

� Coherent forecasts

� Ability to handle non-rectangular inputs

� Scalability
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Statistical Framework for a Single Population

� Training Dataset D = (x1:n,(`), y1:n,(`))

� Specify prior distribution and then compute conditional distribution given the data

p(f |D) ∝ p(y |f , x)p(f ) = {likelihood} · {prior}
� Covariance structure: knowing response at x will greatly in�uence response at

�neighboring� x 's

� Gaussian prior + Gaussian likelihood ⇒ Gaussian posterior

� Gaussian random �eld w/prior f ∼ GP(m(x),C (x, x))

� Observation likelihood p(y |f ) = N (y |f ,Σ) (Gaussian conjugate!)

� The posterior is Gaussian f (x)|D ∼ N (m∗(x), s
2
∗(x))

� Point forecast m∗(x) and credible band m∗(x)± zαs∗(x)
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Correlating Populations

� Treat population as a factor covariate with hot encoding: xn = (xnag , x
n
yr , x

n
ctr2 , ..., x

n
ctrL)

� Full-rank, squared-exponential kernel:

C(x i , x j) = η2exp

[
−

(x i
ag − x j

ag )
2

2θ2ag
−

(x i
yr − x j

yr )
2

2θ2yr

]
︸ ︷︷ ︸

Covariance over Age & Year

Cross-population covariance︷ ︸︸ ︷∏
{l1,l2}

exp

[
− θl1,l2δ

ij
l1,l2

]

� Cross-population correlation is an exponential function of θl1,l2 : rl1,l2 = exp (−θl1,l2).
� Large value of θl1,l2 → low correlation between two populations.

� Separability between cross-population covariance and covariance over the Age-Year inputs.

� Observations across L populations share same spatial covariance kernel: commonality via

θag and θyr .

� Estimating the cross-covariance kernel requires L(L− 1)/2 parameters θl1,l2 .

4



Interlude

Multi-Output GP Framework: each population has its own surface fl , inferred jointly

Everything looks like a nail:

� Cause-of-death: x = (Year ,AgeGroup,Cause)

� Demographics: x = (Year ,Age,Gender ,Demographic)

� Birth Cohort e�ect: x = (Year ,Age,BirthYear)

� Covid-19 Excess Deaths: x = (Week ,Year ,AgeGroup)

� Single-population vs joint modeling:

� Credibility

� Commonality

� Tractability
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Dimension Reduction



Coregionalization

� Curse of dimensionality is a major challenge

� Intrinsic coregionalization model (Alvarez et al 2011)

� The `-th surface f` is a linear comb. of Q indep. latent GPs: f`(x) =
∑Q

q=1 a`,quq(x).

I a`,q's: factor loadings & u1(x), . . . , uQ(x): independent latent functions from a GP prior with

covariance C (u).

� The ICM-MOGP covariance:

Cov(f(x), f(x′)) =
( Q∑

q=1

aqa
T
q

)
⊗ C (u)(x, x′) = B ⊗ C (u)(x, x′)

I B ∈ RL×L: cross-population covariance or coregionalization matrix with rank Q.

I C(u) ∈ RN×N : covariance over Age-Year inputs.

� Number of parameters in cross-population covariance is Q × L.

I Q < L/2→ reduce hyper-parameter space + alleviate computational budget.

I Q is chosen based on Bayesian Information Criterion (BIC).
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Semiparametric Latent Factor Model

� Teh et al 2004: allow for spatial heterogeneity

f`(x) =
Q∑

q=1

a`,quq(x).

where uq(·) has covariance kernel C
(u)
q (x, x′).

� The covariance for f(x) is:

Cov(f(x), f(x′)) =
Q∑

q=1

AqA
T
q C

(u)
q (x, x′) =

Q∑
q=1

BqC
(u)
q (x, x′)

where Aq = aq = (a1,q, a2,q, . . . , aL,q)
T and each Bq has rank one.
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Hierarchies

� Can further decompose if have several types of populations (e.g cause + country)

� Take fl(x) =
∑PQ

i=1 al,iui (x) and Cov(f(x), f(x′)) = B ⊗ C (u)(x, x′)

� Kronecker product: B = C ⊗ D: C ∈ RLc×Lc is the cross-country covariance and

D ∈ RLd×Ld is the cross-cause covariance: e�ective dimension P + Q

� Means al,i = (Ac ⊗ Ad)li where Ac are the factor loadings on countries and Ad on cause

� Ac = (e1, . . . , eQ) w/vectors eq = (e1,q, . . . , eLc ,q)
T

� Hierarchical SLFM also possible

� Can handle up to 25 populations
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Features of MOGP



Global Mortality Structure

� Estimation of GP hyperparameters is challenging; MLE might be unstable

� Common dependence structure mitigates calibration errors

� A joint model �t on multiple populations has tighter hyper-parameter posteriors
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Information Fusion/Clustering Populations

� Data from di�erent countries arrives

non-synchronously

� Borrow latest information from others

� 2016 Hungarian data is missing;

incorporate 1990-2016 neighboring data

� Borrowing latest information from

highly-corr. popns is better than having

latest domestic data
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� Factor loadings provide insight on

dependence across populations:

� Two well-separated clusters among

8 countries in this example.

� Countries within the same cluster

are more correlated.
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Coherent forecasts

SMAPE
2013 (1-yr out) 2016 (4-yr out)

Single-pop Multi-pop Single-pop Multi-pop

Denmark 1.58 1.52 1.26 1.22

Sweden 1.05 0.82 2.53 0.83

� Point forecasts assessed via mean absolute

percentage error

� Probabilistic forecasts assessed via CRPS

� Multi-population models tend to reduce

posterior variance

� Mortality across populations moves

in unison over time

� Forecasts via MOGP maintain

historical characteristics

� Extrapolation reverts to the prior

m∗(x)→ m(x)

� Transition controlled by θyr
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Cause of Death



Human Cause of Death Database

� causeofdeath.org

� Causes based on ICD codes

� By-cause patterns are heterogenous

� Data much more noisy: fusion is

important to see the forest for the trees
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Common Cancers
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Figure 1: Raw Log-mortality rates in common variations of cancer in Poland. Lung and Colorectal cancers are the

leading cause of cancer deaths while the prevalence of Pancreas and Stomach cancers are relatively lower.
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Smoothed Improvement Rates
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Figure 2: Smoothed YoY improvement rates for Poland via MOGP models by countries and age groups. Stomach cancer

has the largest improvement rate.
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Correlation across Causes

� Negative correlation is empirically possible

� Not necessarily expect coherence/long-term convergence

� Causes vs countries dependence
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Summary

� Hierarchical GP approach to handle tensor mortality data

� Natural framework for enforcing/uncovering common dependence structure

� Investigate di�erent dimension reduction techniques

� Wide scope for further enhancements:

� Kernel selection

� Trend modeling

� Noise modeling

� Nonstationary covariance

� Approximation for large datasets (eg Kronecker structure)

� Multiple software implementations (R, Python)

Thank You!
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Reproducible R notebook:

N. Huynh, M. Ludkovski

Multi-Output Gaussian Processes for Multi-Population Longevity

Modeling

Annals of Actuarial Science, to Appear, 2021 arXiv:2003.02443

N. Huynh, M. Ludkovski, H. Zail

Multipopulation Longevity Analysis: a Spatial Random Field Approach

SOA 2020 Living to 100 Symposium

RShiny apps and Tutorials:

� https://nhanhuynh46.github.io/

MOGPTutorials/

� https://rosalia1010.shinyapps.io/

COVID19_ExcessDeaths/

� https://rosalia1010.shinyapps.io/

Longevity_Forecasting_Tool/

� github.com/jimmyrisk/

GPmortalityNotebook
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