

Advances in Model-Based Clustering

Bettina Grün

Insurance Data Science Conference 2021

This research is supported by the Austrian Science Fund (FWF): P28740.

Cluster analysis

- The task of grouping a set of objects such that:
 - Objects in the same group are as similar as possible.
 - Objects in different groups are as dissimilar as possible.
- The aim is to determine a partition of the given set of objects, e.g., to determine which objects belong to the same group and which to different groups.
- Exploratory data analysis tool to detect structure in the data.
- Statistical methods:
 - Heuristic methods: hierarchical clustering, partitioning methods (e.g., *k*-means).
 - Model-based methods: finite mixture models.

Specifying the cluster problem

- The cluster problem is in general perceived as ill defined.
- Different notions of what defines a cluster exist:
 - Compactness.
 - Density-based levels.
 - Connectedness.
 - Functional similarity.
- Several cluster solutions might exist for a given data set depending on which notion is used.
- The application context is important to define which clusters should be targeted and to assess the usefulness of a clustering solution.

Specifying the cluster problem / 2

Model-based clustering methods

- Model-based clustering embeds the clustering problem in a probabilistic framework.
- This implies:
 - Statistical inference tools can be used.
 - Different cluster distributions can be used depending on the cluster notion.
 - More explicit specification of what defines a cluster required than for heuristic methods.

Finite mixture models

- Generative model for observations y_i given x_i , i = 1, ..., n:
 - Draw a cluster membership indicator S_i from a multinomial distribution with parameters $\eta = (\eta_1, \dots, \eta_K)$.
 - 2 Draw y_i given x_i and S_i from the cluster distribution:

$$\mathbf{y}_i | \mathbf{x}_i, S_i \sim f_{S_i}(\mathbf{y}_i | \mathbf{x}_i).$$

• The distribution of **y**_i given **x**_i is then given by

$$\mathbf{y}_i | \mathbf{x}_i \sim \sum_{k=1}^{K} \eta_k f_k(\mathbf{y}_i | \mathbf{x}_i),$$

where

- $\eta_k \ge 0$ for all k and $\sum_{k=1}^{K} \eta_k = 1$.
- $f_k()$ represents the cluster distribution.

Finite mixture models / 2

Methods differ with respect to:

- Clustering kernel:
 - Specification of cluster distributions.
 - Use of additional variables x_i , e.g., for regression.
- Estimation framework:
 - Maximum likelihood estimation.
 - Bayesian estimation.

Finite mixture models / 3

• Cluster membership indicators can be inferred using the a-posteriori probabilities:

 $\mathbb{P}(S_i = k | \mathbf{y}_i, \mathbf{x}_i) \propto \eta_k f_k(\mathbf{y}_i | \mathbf{x}_i).$

- A hard assignment can be obtained by:
 - Assigning to the cluster where this probability is maximum.
 - Drawing from this probability distribution.
 - \Rightarrow Results in a partition of the data.

Finite mixture models / 4

Estimation of finite mixtures with fixed ${\boldsymbol{\mathcal{K}}}$

- Maximum likelihood estimation:
 - Expectation-Maximization (EM) algorithm.
 - General purpose optimizers.
 - Hybrid approaches.
- Bayesian estimation:
 - Markov chain Monte Carlo (MCMC) sampling with data augmentation by adding *S_i*, *i* = 1, ..., *n*.
 - General purpose Gibbs samplers can be used, e.g., JAGS available in R through package **rjags** (Plummer, 2019).

Determining the number of clusters

- No generally accepted solution available.
- Suggested methods include:
 - Maximum likelihood estimation:
 - Information criteria: AIC, BIC, ICL.
 - Likelihood ratio test with distribution under the null determined using sampling methods.
 - Bayesian estimation:
 - Marginal likelihoods.
 - Posterior of the number of clusters in the data partitions, in particular for overfitting mixtures with sparsity inducing priors.
 - Transdimensional sampling schemes with a prior on K.

Clustering kernel

Components corresponding to clusters:

Use parametric distributions for the components and thus also for the clusters.

- Multivariate continuous data.
- Multivariate categorical data.
- Multivariate mixed data.
- Multivariate data with regression structure.
- Combining components to clusters:

Use mixture distributions as cluster distributions.

- Two-step procedures.
- Simultaneous estimation using constraints or informative priors.

- The standard model is a mixture of multivariate Gaussians.
- The model-based clustering model is given by

$$\mathbf{y}_i \sim \sum_{k=1}^{K} \eta_k \phi(\mathbf{y}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

• For *K* clusters and *d*-dimensional observations *y_i* the number of estimated parameters corresponds to

$$K \cdot (d+d(d+1)/2) + K - 1.$$

- Parsimonity is achieved based on the decomposition of the variance-covariance matrix into
 - $\bullet \ \ {\rm Volume} \ \lambda$
 - Shape A
 - Orientation D

given by

$$\Sigma_k = \lambda_k D_k A_k D_k^{\top}.$$

- 14 different models emerge by imposing different constraints on the variance-covariance matrices within or across clusters.
- Available packages in R, e.g.,
 - mclust (Scrucca et al., 2016),
 - mixture (Pocuca et al., 2021),
 - **Rmixmod** (Lebret et al., 2015).

- Alternative approaches to achieve parsimonity are mixtures of factor analyzers.
 - E.g., package **pgmm** (McNicholas et al., 2019) in R.
- If the cluster shapes are not symmetric and light tailed, alternative cluster kernels are:
 - *t*-distributions (e.g., package **teigen**; Andrews et al. 2018).
 - Skewed and / or heavy tailed distributions: e.g.,
 - mixsmsn (Prates et al., 2013),
 - MixSAL (Franczak et al., 2018).

Multivariate categorical data

- Often also referred to as latent class analysis.
- Clusters induce a dependency between variables, while variables are independent within clusters.

 \Rightarrow Local independency assumption.

• The model-based clustering model is given by

$$oldsymbol{y}_i \sim \sum_{k=1}^{K} \eta_k \left[\prod_{j=1}^{d} ext{Multinomial}(y_{ij} | \pi_k^j)
ight]$$

for *d*-dimensional observations.

- Available packages in R: e.g.,
 - **poLCA** (Linzer and Lewis, 2011)
 - Rmixmod (Lebret et al., 2015)

Multivariate data with regression structure

- Often also referred to as clusterwise regression.
- The model-based clustering model is given by

$$\mathbf{y}_i | \mathbf{x}_i \sim \sum_{k=1}^{K} \eta_k f(\mathbf{y}_i | \boldsymbol{\mu}_k(\mathbf{x}_i), \phi_k).$$

- Different regression models possible:
 - Generalized linear models.
 - Generalized linear mixed-effects models.
- Available packages in R: e.g.,
 - flexmix (Leisch, 2004; Grün and Leisch, 2008)
 - mixtools (Benaglia et al., 2009)

Multivariate data with regression structure / 2

Combining components to clusters

- Two-step procedures:
 - Fit a mixture model as semi-parametric tool for density estimation.
 - Combine components of the mixture model to form clusters based on some criterion.

Available packages in R, e.g.:

- **mclust** uses entropy or connectedness of components as criterion (Baudry et al., 2010; Scrucca, 2016).
- **fpc** (Hennig, 2020) provides several variants as proposed in Hennig (2010).
- Simultaneous estimation using informative priors in Bayesian estimation can be used in combination with standard estimation methods.

Applications of model-based clustering

- Modeling unobserved heterogeneity:
 - Density approximation / semi-parametric modeling.
 - Continuous versus discrete heterogeneity.
- Extensibility:
 - Any statistical model can be used as cluster-specific model.
 - Model-specific estimation methods can be re-used.
- Challenges:
 - Selecting the clustering base: variable selection.
 - Assessing and comparing different clustering solutions.

Summary

- Model-based clustering is a versatile method for clustering.
- Different variants exist depending on
 - Clustering kernel.
 - Estimation approach.
- A large number of R packages are available covering different kinds of models.
- For more information see the CRAN Task View: Cluster Analysis & Finite Mixture Models:

```
https://CRAN.R-project.org/view=Cluster
```

References

- J. L. Andrews, J. R. Wickins, N. M. Boers, and P. D. McNicholas. teigen: An R package for model-based clustering and classification via the multivariate *t* distribution. **Journal of Statistical Software**, 83(7):1–32, 2018. doi: 10.18637/jss.v083.i07.
- J.-P. Baudry, A. Raftery, G. Celeux, K. Lo, and R. Gottardo. Combining mixture components for clustering. Journal of Computational and Graphical Statistics, 2(19):332–353, 2010. doi: 10.1198/jcgs.2010.08111.
- T. Benaglia, D. Chauveau, D. R. Hunter, and D. Young. mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6):1–29, 2009. doi: 10.18637/jss.v032.i06.

B. C. Franczak, R. P. Browne, P. D. McNicholas, and K. L. Burak. MixSAL: Mixtures of Multivariate Shifted Asymmetric Laplace (SAL) Distributions, 2018. URL https://CRAN.R-project.org/package=MixSAL. R package version 1.0.

References / 2

- B. Grün and F. Leisch. FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters. **Journal of Statistical Software**, 28(4):1–35, 2008. doi: 10.18637/jss.v028.i04.
- C. Hennig. Methods for merging Gaussian mixture components. Advances in Data Analysis and Classification, 4(1):3–34, 2010. doi: 10.1007/s11634-010-0058-3.
- C. Hennig. **fpc: Flexible Procedures for Clustering**, 2020. URL https://CRAN.R-project.org/package=fpc. R package version 2.2-9.
- R. Lebret, S. lovleff, F. Langrognet, C. Biernacki, G. Celeux, and G. Govaert. Rmixmod: The R package of the model-based unsupervised, supervised, and semi-supervised classification Mixmod library. Journal of Statistical Software, 67(6):1–29, 2015. doi: 10.18637/jss.v067.i06.
- F. Leisch. FlexMix: A general framework for finite mixture models and latent class regression in R. Journal of Statistical Software, 11(8):1–18, 2004. doi: 10.18637/jss.v011.i08.

References / 3

- D. A. Linzer and J. B. Lewis. poLCA: An R package for polytomous variable latent class analysis. **Journal of Statistical Software**, 42(10):1–29, 2011. doi: 10.18637/jss.v042.i10.
- P. D. McNicholas, A. ElSherbiny, A. F. McDaid, and T. B. Murphy. **pgmm: Parsimonious Gaussian Mixture Models**, 2019. URL https://CRAN.R-project.org/package=pgmm. R package version 1.2.4.
- M. Plummer. rjags: Bayesian Graphical Models Using MCMC, 2019. URL https://CRAN.R-project.org/package=rjags. R package version 4-10.
- N. Pocuca, R. P. Browne, and P. D. McNicholas. mixture: Mixture Models for Clustering and Classification, 2021. URL https://CRAN.R-project.org/package=mixture. R package version 2.0.4.
- M. O. Prates, C. R. B. Cabral, and V. H. Lachos. mixsmsn: Fitting finite mixture of scale mixture of skew-normal distributions. Journal of Statistical Software, 54(12):1–20, 2013. doi: 10.18637/jss.v054.i12.

References / 4

- L. Scrucca. Identifying connected components in Gaussian finite mixture models for clustering. **Computational Statistics & Data Analysis**, 93: 5–17, 2016. doi: 10.1016/j.csda.2015.01.006.
- L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery. mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. **The R Journal**, 8(1):205–233, 2016.