Advances in Model-Based Clustering

Bettina Grün

Insurance Data Science Conference 2021

This research is supported by the Austrian Science Fund (FWF): P28740.

Cluster analysis

- The task of grouping a set of objects such that:
- Objects in the same group are as similar as possible.
- Objects in different groups are as dissimilar as possible.
- The aim is to determine a partition of the given set of objects, e.g., to determine which objects belong to the same group and which to different groups.
- Exploratory data analysis tool to detect structure in the data.
- Statistical methods:
- Heuristic methods: hierarchical clustering, partitioning methods (e.g., k-means).
- Model-based methods: finite mixture models.

Specifying the cluster problem

- The cluster problem is in general perceived as ill defined.
- Different notions of what defines a cluster exist:
- Compactness.
- Density-based levels.
- Connectedness.
- Functional similarity.
- Several cluster solutions might exist for a given data set depending on which notion is used.
- The application context is important to define which clusters should be targeted and to assess the usefulness of a clustering solution.

Specifying the cluster problem / 2

Model-based clustering methods

- Model-based clustering embeds the clustering problem in a probabilistic framework.
- This implies:
- Statistical inference tools can be used.
- Different cluster distributions can be used depending on the cluster notion.
- More explicit specification of what defines a cluster required than for heuristic methods.

Finite mixture models

- Generative model for observations \boldsymbol{y}_{i} given $\boldsymbol{x}_{i}, i=1, \ldots, n$:
(1) Draw a cluster membership indicator S_{i} from a multinomial distribution with parameters $\boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{K}\right)$.
(2) Draw \boldsymbol{y}_{i} given \boldsymbol{x}_{i} and S_{i} from the cluster distribution:

$$
\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, S_{i} \sim f_{S_{i}}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}\right)
$$

- The distribution of \boldsymbol{y}_{i} given \boldsymbol{x}_{i} is then given by

$$
\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i} \sim \sum_{k=1}^{K} \eta_{k} f_{k}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}\right)
$$

where

- $\eta_{k} \geq 0$ for all k and $\sum_{k=1}^{K} \eta_{k}=1$.
- $f_{k}()$ represents the cluster distribution.

Finite mixture models /2

Methods differ with respect to:

- Clustering kernel:
- Specification of cluster distributions.
- Use of additional variables \boldsymbol{x}_{i}, e.g., for regression.
- Estimation framework:
- Maximum likelihood estimation.
- Bayesian estimation.

Finite mixture models $/ 3$

- Cluster membership indicators can be inferred using the a-posteriori probabilities:

$$
\mathbb{P}\left(S_{i}=k \mid \boldsymbol{y}_{i}, \boldsymbol{x}_{i}\right) \propto \eta_{k} f_{k}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}\right)
$$

- A hard assignment can be obtained by:
- Assigning to the cluster where this probability is maximum.
- Drawing from this probability distribution.
\Rightarrow Results in a partition of the data.

Finite mixture models $/ 4$

Estimation of finite mixtures with fixed K

- Maximum likelihood estimation:
- Expectation-Maximization (EM) algorithm.
- General purpose optimizers.
- Hybrid approaches.
- Bayesian estimation:
- Markov chain Monte Carlo (MCMC) sampling with data augmentation by adding $S_{i}, i=1, \ldots, n$.
- General purpose Gibbs samplers can be used, e.g., JAGS available in R through package rjags (Plummer, 2019).

Determining the number of clusters

- No generally accepted solution available.
- Suggested methods include:
- Maximum likelihood estimation:
- Information criteria: AIC, BIC, ICL.
- Likelihood ratio test with distribution under the null determined using sampling methods.
- Bayesian estimation:
- Marginal likelihoods.
- Posterior of the number of clusters in the data partitions, in particular for overfitting mixtures with sparsity inducing priors.
- Transdimensional sampling schemes with a prior on K.

Clustering kernel

- Components corresponding to clusters:

Use parametric distributions for the components and thus also for the clusters.

- Multivariate continuous data.
- Multivariate categorical data.
- Multivariate mixed data.
- Multivariate data with regression structure.
- Combining components to clusters:

Use mixture distributions as cluster distributions.

- Two-step procedures.
- Simultaneous estimation using constraints or informative priors.

Multivariate continuous data

- The standard model is a mixture of multivariate Gaussians.
- The model-based clustering model is given by

$$
\boldsymbol{y}_{i} \sim \sum_{k=1}^{K} \eta_{k} \phi\left(\boldsymbol{y}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- For K clusters and d-dimensional observations \boldsymbol{y}_{i} the number of estimated parameters corresponds to

$$
K \cdot(d+d(d+1) / 2)+K-1 .
$$

Multivariate continuous data $/ 2$

- Parsimonity is achieved based on the decomposition of the variance-covariance matrix into
- Volume λ
- Shape A
- Orientation D
given by

$$
\Sigma_{k}=\lambda_{k} D_{k} A_{k} D_{k}^{\top} .
$$

- 14 different models emerge by imposing different constraints on the variance-covariance matrices within or across clusters.
- Available packages in R, e.g.,
- mclust (Scrucca et al., 2016),
- mixture (Pocuca et al., 2021),
- Rmixmod (Lebret et al., 2015).

Multivariate continuous data $/ 3$

Multivariate continuous data $/ 4$

Multivariate continuous data $/ 5$

- Alternative approaches to achieve parsimonity are mixtures of factor analyzers.
- E.g., package pgmm (McNicholas et al., 2019) in R.
- If the cluster shapes are not symmetric and light tailed, alternative cluster kernels are:
- t-distributions (e.g., package teigen; Andrews et al. 2018).
- Skewed and / or heavy tailed distributions: e.g.,
- mixsmsn (Prates et al., 2013),
- MixSAL (Franczak et al., 2018).

Multivariate categorical data

- Often also referred to as latent class analysis.
- Clusters induce a dependency between variables, while variables are independent within clusters.
\Rightarrow Local independency assumption.
- The model-based clustering model is given by

$$
\boldsymbol{y}_{i} \sim \sum_{k=1}^{K} \eta_{k}\left[\prod_{j=1}^{d} \operatorname{Multinomial}\left(y_{i j} \mid \pi_{k}^{j}\right)\right]
$$

for d-dimensional observations.

- Available packages in R: e.g.,
- poLCA (Linzer and Lewis, 2011)
- Rmixmod (Lebret et al., 2015)

Multivariate data with regression structure

- Often also referred to as clusterwise regression.
- The model-based clustering model is given by

$$
\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i} \sim \sum_{k=1}^{K} \eta_{k} f\left(\boldsymbol{y}_{i} \mid \boldsymbol{\mu}_{k}\left(\boldsymbol{x}_{i}\right), \phi_{k}\right)
$$

- Different regression models possible:
- Generalized linear models.
- Generalized linear mixed-effects models.
- Available packages in R: e.g.,
- flexmix (Leisch, 2004; Grün and Leisch, 2008)
- mixtools (Benaglia et al., 2009)

Multivariate data with regression structure / 2

Combining components to clusters

- Two-step procedures:
(1) Fit a mixture model as semi-parametric tool for density estimation.
(2) Combine components of the mixture model to form clusters based on some criterion.
Available packages in R, e.g.:
- mclust uses entropy or connectedness of components as criterion (Baudry et al., 2010; Scrucca, 2016).
- fpc (Hennig, 2020) provides several variants as proposed in Hennig (2010).
- Simultaneous estimation using informative priors in Bayesian estimation can be used in combination with standard estimation methods.

Applications of model-based clustering

- Modeling unobserved heterogeneity:
- Density approximation / semi-parametric modeling.
- Continuous versus discrete heterogeneity.
- Extensibility:
- Any statistical model can be used as cluster-specific model.
- Model-specific estimation methods can be re-used.
- Challenges:
- Selecting the clustering base: variable selection.
- Assessing and comparing different clustering solutions.

Summary

- Model-based clustering is a versatile method for clustering.
- Different variants exist depending on
- Clustering kernel.
- Estimation approach.
- A large number of R packages are available covering different kinds of models.
- For more information see the CRAN Task View: Cluster Analysis \& Finite Mixture Models:
https://CRAN.R-project.org/view=Cluster

References

J. L. Andrews, J. R. Wickins, N. M. Boers, and P. D. McNicholas. teigen: An R package for model-based clustering and classification via the multivariate t distribution. Journal of Statistical Software, 83(7):1-32, 2018. doi: 10.18637/jss.v083.i07.
J.-P. Baudry, A. Raftery, G. Celeux, K. Lo, and R. Gottardo. Combining mixture components for clustering. Journal of Computational and Graphical Statistics, 2(19):332-353, 2010. doi: 10.1198/jcgs.2010.08111.
T. Benaglia, D. Chauveau, D. R. Hunter, and D. Young. mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6):1-29, 2009. doi: 10.18637/jss.v032.i06.
B. C. Franczak, R. P. Browne, P. D. McNicholas, and K. L. Burak. MixSAL: Mixtures of Multivariate Shifted Asymmetric Laplace (SAL) Distributions, 2018. URL https://CRAN.R-project.org/package=MixSAL. R package version 1.0 .

References / 2

B. Grün and F. Leisch. FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters. Journal of Statistical Software, 28(4):1-35, 2008. doi: 10.18637/jss.v028.i04.
C. Hennig. Methods for merging Gaussian mixture components. Advances in Data Analysis and Classification, 4(1):3-34, 2010. doi: 10.1007/s11634-010-0058-3.
C. Hennig. fpc: Flexible Procedures for Clustering, 2020. URL https://CRAN.R-project.org/package=fpc. R package version 2.2-9.
R. Lebret, S. Iovleff, F. Langrognet, C. Biernacki, G. Celeux, and G. Govaert. Rmixmod: The R package of the model-based unsupervised, supervised, and semi-supervised classification Mixmod library. Journal of Statistical Software, 67(6):1-29, 2015. doi: 10.18637/jss.v067.i06.
F. Leisch. FlexMix: A general framework for finite mixture models and latent class regression in R. Journal of Statistical Software, 11(8):1-18, 2004. doi: 10.18637/jss.v011.i08.

References / 3

D. A. Linzer and J. B. Lewis. poLCA: An R package for polytomous variable latent class analysis. Journal of Statistical Software, 42(10):1-29, 2011. doi: 10.18637/jss.v042.i10.
P. D. McNicholas, A. ElSherbiny, A. F. McDaid, and T. B. Murphy. pgmm: Parsimonious Gaussian Mixture Models, 2019. URL https://CRAN.R-project.org/package=pgmm. R package version 1.2.4.
M. Plummer. rjags: Bayesian Graphical Models Using MCMC, 2019. URL https://CRAN.R-project.org/package=rjags. R package version 4-10.
N. Pocuca, R. P. Browne, and P. D. McNicholas. mixture: Mixture Models for Clustering and Classification, 2021. URL https://CRAN.R-project.org/package=mixture. R package version 2.0.4
M. O. Prates, C. R. B. Cabral, and V. H. Lachos. mixsmsn: Fitting finite mixture of scale mixture of skew-normal distributions. Journal of Statistical Software, 54(12):1-20, 2013. doi: 10.18637/jss.v054.i12.

References / 4

L. Scrucca. Identifying connected components in Gaussian finite mixture models for clustering. Computational Statistics \& Data Analysis, 93: 5-17, 2016. doi: 10.1016/j.csda.2015.01.006.
L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery. mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1):205-233, 2016.

