Introduction GP Adaptive Results

Statistical Learning for Portfolio Tail Risk Measurement

Mike Ludkovski

joint with Jimmy Risk (Cal Poly Pomona)

Data Science in Insurance Conference, Cass Business School, July 16, 2018

UC Santa Barbara

Portfolio Risk Measurement

- Risk Assessment mandated by Solvency II: 99.5% VaR (TVaR in banking) at 1-year horizon
- Practically computed by building N scenarios for market conditions at T (P-measure)
- ▶ Then need to evaluate portfolio losses for each scenario (Q-measure) and compute the α -quantile
- No simple way to compute portfolio value. Typical approach: Monte Carlo approximation
- Leads to nested simulations: Generate N_{in} inner simulations at scenario n to compute cashflows y^{n,i}; average to estimate portfolio value ȳⁿ

Outline: Finding Needle in a Haystack

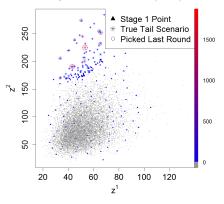
- Intense computation burden: (N = 100,000) × (N_{in} ≫ 100) simulations per scenario → tens of millions of simulations
- Ultimately only 0.5% = 500 scenarios are relevant for (T)VaR
- GOAL OF THE TALK: how to adaptively allocate simulation budget to avoid "wasted" simulations
- Statistics: Spatial emulation and GPs
- Machine Learning: Acquisition functions for sequential design
- Actuarial Science: Case Studies
- Seek two orders-of-magnitude gains

Setting

- ► Given *N* scenarios (discretized scenario space)
- Usually comes from economic scenario generators (physical measure)
- ▶ VaR: find level of the α Nth worst loss: order statistic
- **•** TVaR: find the **average** of the αN worst losses
- ▶ Have a total limited simulation budget of $\mathcal{N} \simeq \mathcal{O}(N)$
- Will sequentially add inner simulations: rounds k = 1, 2, ...
- Overall design is $\mathcal{D}_k := (r_k^n)$: r_k^n is the number of inner simulations allocated by round k, $\sum_{n=1}^{N} r_k^n = N_k$ ($N_K = \mathcal{N}$)
- \blacktriangleright Focus on non-asymptotic performance with low budget ${\cal N}$

Take-Away

- Focus effort on the tail scenarios
- Use a statistical surrogate to borrow information from inner simulations of other scenarios
- Skip entirely (most of) the scenarios that are far from the tail
- Improve estimates for scenarios that matter



Replications Per Location (SUR3)

Spatial Modeling

- Scenarios correspond to realizations of underlying stochastic factors (Z_t)
- Associate scenario to $Z_T = z$
- ▶ Portfolio: cashflows with net present value $Y = F(Z_s : s \ge T)$. Portfolio value is $f(z) := \mathbb{E}[Y|Z_T = z]$
- If two scenarios are close, then the portfolio losses f(z), f(z') should be also close
- Build a spatial statistical model for f over the domain of Z —learn the correlation structure of $f(z^{1:N})$
- We use Gaussian Process emulation: quantifies the posterior uncertainty for allocation of future simulations + efficient sequential updating

Literature Review

We develop a machine learning framework tailored to portfolio risk measurement

- Large number of scenarios (many emulators are for very expensive simulators)
- Complicated simulation noise (heteroskedastic, non-Gaussian, etc)
- Learning objective is implicit (contrast to thresholding f(z) against a known L)

Simulation/OR Literature:

- Gordy & Juneja (MS 2010), Broadie et al (MS 2011): efficient outer/inner allocation without spatial structure and with continuous scenario space
- ▶ Broadie et al (OR 2012): linear regression plus two stage design
- ▶ Liu and Staum (WSC 2011): three-stage adaptive allocation
- Statistical Emulation
 - Picheny et al (2012, 2015, 2017): surrogate models + active learning for level sets (continuous search space, no replicates)
 - Bauer et al (Astin 2012): LSMC regression for capital requirements (non-adaptive)
 - ▶ Binois et al (JCGS 2018): specialized GP surrogate to handle stochastic simulators

Gaussian Process Emulator

- Non-parametric regression, similar to splines or kernel regression
- Multivariate Gaussian structure to describe the shape of $f(\cdot)$: covariance matrix $C_{i,j} = C(z^i, z^j)$. We used the isotropic Matern-5/2 family.
- MVN posterior $f(z)|\mathcal{D}_k \sim \mathcal{N}(m_k(z), s_k^2(z))$: mean $m_k(z^n)$ is proxy for $\hat{f}(z^n)$; $s_k^2(z^n)$ quantifies credibility

$$\blacktriangleright \mathbf{R} = \operatorname{Diag}(r_k^1, \ldots, r_k^n), \ \mathbf{\Delta} = \operatorname{Diag}(\tau^2(z^1), \ldots, \tau^2(z^n))$$

$$m_k(z) \doteq \mathbf{c}(z)^T (\mathbf{C} + \mathbf{R}^{-1} \mathbf{\Delta}_k)^{-1} \overline{\mathbf{y}}_k;$$

$$s_k^2(z) \doteq C(z, z) - \mathbf{c}(z)^T (\mathbf{C} + \mathbf{R}^{-1} \mathbf{\Delta}_k)^{-1} \mathbf{c}(z),$$

- ▶ Only need to work with the unique scenarios $z^n \in D$
- State-dependent simulation variance: Treat the noise terms Δ's as a latent spatial process: Δ = C_g(C_g + gR⁻¹)⁻¹Λ − hetGP: package

Budget allocation

- I. Initialize \hat{f}_0 by generating simulations over a subset of pilot scenarios. LOOP : predict \hat{f}_k on \mathcal{Z} to determine which scenarios are close to \mathcal{R} .
 - II. Compute acquisition function aka weights $\mathcal{H}(z^n), n = 1, \dots N$
 - III. Allocate more inner simulations to scenarios with high weights: Generate cashflows $(Y_t^i(z^n))_{t=T}^{\infty}$ and new $y_k^{n,i}$
 - IV. Batch of Δr new simulations per round (computational speed-up)
 - V. Update emulator to \hat{f}_{k+1} based on the new MC output.
- ND LOOP

Further Details

Assigning Scenario Weights

- Heuristics H(z) about information gain from running more simulations at z greedy but still takes into account Exploration/Exploitation trade-off
- ► Stepwise Uncertainty Reduction: $\mathcal{H}_{k+1}|_{r_{k+1}^n = r_k^n + 1} \mathcal{H}_k$
- Active learning/simulation optimization/sequential design/knowledge gradient/....
- Take advantage of nesting to improve both accuracy and speed

Estimating Portfolio Risk

- ▶ Plug-in estimator based on the ranked posterior means $m_k^{(n)}$
- Risk measure is $R = \sum_{n=1}^{N} w^n f(z^n)$ with VaR: $w^n = 1_{\{f(z^n) = f^{(\alpha N)}\}}$; TVaR: $w^n = \frac{1}{\alpha N} \cdot 1_{\{f(z^n) < f^{(\alpha N)}\}}$.

► Smooth using Harrell-Davis L-estimator, $\hat{R}_k^{HD,VaR} \doteq \sum_n \tilde{w}^{(n)} m_k^{(n)}$

Targeting the Quantile Level: ST-GP

► Targeted mean square error (Picheny et al 2012): tmse_k(z) $\doteq s_k^2(z)W_k(z; L, \varepsilon)$

$$W_k^{\mathsf{VaR}}(z;L,\varepsilon) \doteq rac{1}{\sqrt{2\pi(s_k^2(z)+arepsilon^2)}}\exp\left(-rac{1}{2}\left(rac{m_k(z)-L}{\sqrt{s_k^2(z)+arepsilon^2}}
ight)^2
ight) = \phi(m_k(z)-L,s_k^2(z)+arepsilon^2)$$

• High when $m_k \simeq L$ or when posterior variance is large

- ε controls how aggressive is the search. Take $\varepsilon = s(\hat{R}_k^{HD})$ decreases in k
- ► Final criterion to minimize is total (integrated) tmse over all of \mathcal{Z} conditional on adding simulations at z^{k+1} : $\widehat{\mathcal{H}}_{k}^{\text{VaR,timse}}(z) \doteq \frac{1}{N} \sum_{n=1}^{N} V_{k}(z^{n}; z) W_{k}^{\text{VaR}}(z^{n}; \hat{R}_{k}^{\text{HD}})$

► For TVar:
$$W_k^{\mathsf{TVaR}}(z; \hat{R}_k^{HD}) \doteq \frac{1}{\sqrt{2\pi(s_k^2(z)+s^2(\hat{R}_k^{HD}))}} \Phi\left(\frac{\hat{R}_k^{HD}-m_k(z)}{\sqrt{s_k^2(z)+s^2(\hat{R}_k^{HD})}}\right)$$

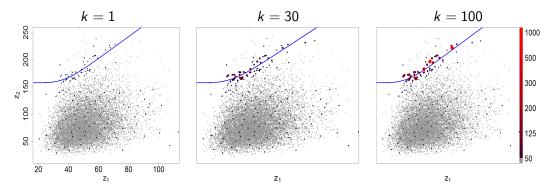
Global Variance Minimization: SV-GP

- Consider the global updating effect of running new inner simulations (Liu and Staum 2010)
- Sample in parallel several different outer scenarios to minimize the posterior estimator variance s²(R_{k+1})
- ► Freeze $\hat{w}_{k+1}^n = \hat{w}_k^n$
- Optimize $\{r_k^{\prime n}\}$ such that $\sum_n r_k^{\prime n} = \Delta r_k$, $r_k^{\prime n} \ge 0$

$$\mathbf{u}_k \mathbf{\Delta}_{k+1}^{cand} \mathbf{u}_k^T$$
 where $\mathbf{u}_k^T \doteq (\mathbf{C} + \mathbf{\Delta}_k)^{-1} \mathbf{C} \hat{\mathbf{w}}_k^T \rightarrow \min!$

- More exploratory compared to ST-GP
- Also higher overhead and more "diffuse" design

Adaptive Budget Allocation: VaR

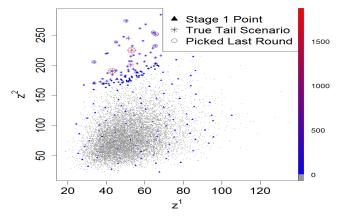


Sequential budget allocation by SV-GP at stages k = 1, 30, 100 to learn VaR_{0.005} in the 2-D Black-Scholes case study. The blue line indicates the true quantile contour $f^{(50)}$. Each dot represents an outer scenario z^n (Stage-0 pilot scenarios in **black**); the respective size and color are scaled non-linearly in r_k^n . Some scenarios receive as many as $r_k^n \approx 1200$ scenarios (total budget of $\mathcal{N} = 10^4$).

Introduction GP Adaptive Results

Adaptive Budget Allocation: TVaR

For TVaR, explore the entire tail, but still non-uniformly due to the spatial structure



Replications Per Location (SUR3)

Toy Example

- Portfolio consisting of Call options
- ► Two underlying risks (+correlated):

$$dS_t^1 = S_t^1 \left(\beta - \frac{1}{2}\sigma_1^2\right) dt + \sigma_1 dW_t^{(1)}, \quad \beta = 0.04$$

$$dS_t^2 = S_t^2 \left(\beta - \frac{1}{2}\sigma_2^2\right) dt + \sigma_2 (\rho dW_t^{(1)} + \sqrt{1 - \rho^2} dW_t^{(2)})$$

Stock	Position	Initial Price	Strike	Maturity	Volatility
S^1	100	50	40	2	25%
<i>S</i> ²	-50	80	85	3	35%

Explicit formula for portfolio loss f(z) via Black-Scholes

$$\Pi(z^{1}, z^{2}) = \mathbb{E}^{\mathbb{Q}}\left[e^{-\beta}100\left(S_{2}^{1} - 40\right)_{+} - e^{-2\beta}50\left(S_{3}^{2} - 85\right)_{+} \middle| \left(S_{1}^{1}, S_{1}^{2}\right) = (z^{1}, z^{2})\right]$$

Analytic bias and RMSE

Important Comparisons

- ► Gain from adaptive allocation S*-GP vs U1-GP
- Gain from sequential learning S*-GP vs A3-GP
- Gain from spatial modeling S*-GP vs BR-SA
- Further considerations: initialization; number of rounds/batch size; variations on acquisition functions; variations on emulators

			Bias				
Approach	Kernel	RMSE	k = 1	k = 10	<i>k</i> = 20	<i>k</i> = 50	<i>k</i> = 100
hetGP	Matérn-5/2	57.52	166.065	113.925	97.751	37.158	28.066
hetGP	Gaussian	68.06	91.475	104.427	74.874	52.716	48.249
SK	Matérn-5/2	69.31	914.728	206.267	113.716	69.821	48.670

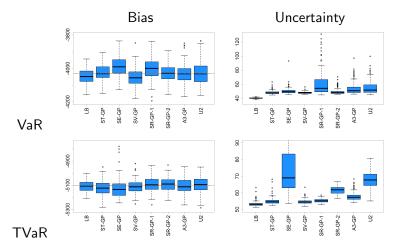
For the 2-D Black Scholes portfolio case study, average RMSE of \hat{R}_{K} across different GP models/kernel families. We also report average bias $bias(\hat{R}_{k})$ across a selection of intermediate stages k = 1, 10, 20, 50, 100. All methods use the ST-GP rule and are based on 100 macro-replications.

Results for 2-D Example

	VaR _{0.005}				TVaR _{0.005}				
	$SD(\hat{R}_{K}^{HD})$	5	RMSE	$ \mathcal{D}_{\mathcal{K}} $	$SD(\hat{R}_{\kappa})$	5	RMSE	$ \mathcal{D}_{\mathcal{K}} $	
LB	44.35	40.42	46.77	1	47.29	53.48	47.42	1	
ST-GP	50.57	48.55	50.59	121.52	59.12	55.17	61.46	118.27	
SE-GP	50.48	50.71	74.03	116.12	93.36	87.83	95.70	111.79	
SV-GP	56.50	48.28	60.53	305.03	55.78	54.76	56.65	163.08	
SR-GP-1	63.27	61.90	69.74	112.43	61.48	55.34	61.86	165.27	
SR-GP-2	50.45	49.82	50.52	180.97	61.66	61.56	62.13	193.46	
A3-GP	61.07	54.18	60.83	292.83	63.57	59.92	63.18	297.44	
U2-GP	68.76	55.91	68.47	194.55	64.92	67.77	64.87	194.64	
U1-GP	695.33	560.52	2965.05	104	909.17	700.43	3003.07	10 ⁴	

For the 2-D Black Scholes case study w/N = 10000: $SD(\hat{R}_{K}^{HD})$: sample standard deviation (SD) over 100 macro-replications [smaller is better], \bar{s} : average GP posterior standard deviation of \hat{R}_{K} [should be close to SD], RMSE of \hat{R}_{K} (vis-a-vis exact quantile) [smaller is better], $|\mathcal{D}_{K}|$: average final design size (100 pilot scenarios) [smaller is faster].

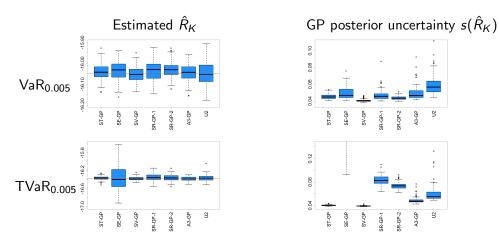
Results for 2-D Example



Var/TVaR estimation for the 2-D Black Scholes case study. Left boxplots display the distribution of the final $\hat{R}_{K}^{\text{TVaR}}$ estimates; on the right is corresponding GP standard deviation $s(\hat{R}_{K}^{\text{TVaR}})$. Results are based on 100 macro-replications for each approach.

Life Annuity Case Study

Six-dimensional example valuing annuity portfolios: 3 factor longevity model M7 (APC fitted StMoMo), 3 factor interest rates (SIR with SV+stoch \bar{r}_t). $N = \mathcal{N} = 10^5$.



Results for 6D

	VaR _{0.005}				TVaR _{0.005}				
	$SD(\hat{R}_{K}^{HD})$	5	RMSE	$ \mathcal{D}_{\mathcal{K}} $	$SD(\hat{R}_{\kappa})$	5	RMSE	$ \mathcal{D}_{\mathcal{K}} $	Time
ST-GP	0.0394	0.0455	0.0403	151.83	0.0461	0.0404	0.0472	147.10	330
SE-GP	0.0427	0.0493	0.0459	143.27	0.2853	0.2717	0.2850	101.62	295
SV-GP	0.0382	0.0406	0.0380	497.81	0.0408	0.0393	0.0407	254.35	403
SR-GP-1	0.0467	0.0470	0.0485	135.03	0.0430	0.0402	0.0430	184.73	219
SR-GP-2	0.0391	0.0437	0.0434	217.36	0.0447	0.0431	0.0450	224.96	198
A3-GP	0.0434	0.0497	0.0436	298.15	0.0464	0.0490	0.0461	298.55	115
U2-GP	0.0598	0.0598	0.0596	194.03	0.0684	0.0601	0.0689	195.81	112
U1-GP	0.5020	0.4156	0.5853	10 ⁴	0.4940	0.4705	0.6709	10 ⁴	177

Results for the 6-D life annuity case study based on 100 macro-replications. We report sample standard deviation of $\hat{R}_{K}^{[1:100]}$, average GP posterior standard deviation \bar{s} , and RMSE of \hat{R}_{K} , as well as average final design size for each approach.

Conclusions

- New links between machine learning/emulation tools and risk measurement
- Important gains thanks to sequential design + advanced emulator (hetGP)
- Tried a variety of acquisition functions, still more work to be done
- Future: make *N* also adaptive

Spatial model gives a variance reduction of x2-5

Adaptive allocation gives a speed-up of x10 - 40

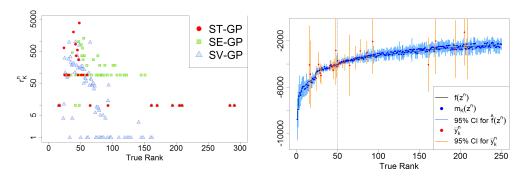
References

- Bect, J., Ginsbourger, D., Li, L., Picheny, V., Vazquez, E., 2012. Sequential design of computer experiments for the estimation of a probability of failure. Statistics and Computing 22 (3), 773–793.
- Liu, M., Staum, J., 2010. Stochastic kriging for efficient nested simulation of expected shortfall. Journal of Risk 12 (3), 3.
- Binois, M., Gramacy, R. B., Ludkovski, M., 2018. Practical heteroskedastic gaussian process modeling for large simulation experiments. Journal of Computational and Graphical Statistics, to Appear. arXiv preprint arXiv:1611.05902.
- Risk, J., Ludkovski, M., 2016. Statistical emulators for pricing and hedging longevity risk products. Insurance: Mathematics and Economics 68, 45–60.
- Risk, J., Ludkovski, M., 2017. Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement, Submitted. arxiv.org/abs/1710.05204

Thank You!

Introduction GP Adaptive Results

Spatial Modeling Gains via Adaptive Replication



Right: Replication counts r_{κ}^{n} versus true rank of $f^{1:N}$ after the final stage for sequential methods for learning VaR in the 2-D Black-Scholes case study. Left: estimated $\hat{f}(z^{n})$ vs true $f(z^{n})$.