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Portfolio Risk Measurement

I Risk Assessment mandated by Solvency II: 99.5% VaR (TVaR in banking) at
1-year horizon

I Practically computed by building N scenarios for market conditions at T
(P-measure)

I Then need to evaluate portfolio losses for each scenario (Q-measure) and compute
the α-quantile

I No simple way to compute portfolio value. Typical approach: Monte Carlo
approximation

I Leads to nested simulations: Generate Nin inner simulations at scenario n to
compute cashflows yn,i ; average to estimate portfolio value ȳn
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Outline: Finding Needle in a Haystack

I Intense computation burden: (N = 100, 000)× (Nin � 100) simulations per
scenario → tens of millions of simulations

I Ultimately only 0.5% = 500 scenarios are relevant for (T)VaR

I GOAL OF THE TALK: how to adaptively allocate simulation budget to avoid
“wasted” simulations

I Statistics: Spatial emulation and GPs

I Machine Learning: Acquisition functions for sequential design

I Actuarial Science: Case Studies

I Seek two orders-of-magnitude gains
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Setting

I Given N scenarios (discretized scenario space)

I Usually comes from economic scenario generators (physical measure)

I VaR: find level of the αNth worst loss: order statistic

I TVaR: find the average of the αN worst losses

I Have a total limited simulation budget of N ' O(N)

I Will sequentially add inner simulations: rounds k = 1, 2, . . .

I Overall design is Dk := (rnk ): rnk is the number of inner simulations allocated by

round k ,
∑N

n=1 r
n
k = Nk (NK = N )

I Focus on non-asymptotic performance with low budget N
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Take-Away

I Focus effort on the tail scenarios

I Use a statistical surrogate to borrow
information from inner simulations of
other scenarios

I Skip entirely (most of) the scenarios
that are far from the tail

I Improve estimates for scenarios that
matter
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Spatial Modeling

I Scenarios correspond to realizations of underlying stochastic factors (Zt)

I Associate scenario to ZT = z

I Portfolio: cashflows with net present value Y = F (Zs : s ≥ T ). Portfolio value is
f (z) := E[Y |ZT = z ]

I If two scenarios are close, then the portfolio losses f (z), f (z ′) should be also close

I Build a spatial statistical model for f over the domain of Z —learn the correlation
structure of f (z1:N)

I We use Gaussian Process emulation: quantifies the posterior uncertainty for
allocation of future simulations + efficient sequential updating
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Literature Review

We develop a machine learning framework tailored to portfolio risk
measurement

I Large number of scenarios (many emulators are for very expensive simulators)

I Complicated simulation noise (heteroskedastic, non-Gaussian, etc)

I Learning objective is implicit (contrast to thresholding f (z) against a known L)

I Simulation/OR Literature:
I Gordy & Juneja (MS 2010), Broadie et al (MS 2011): efficient outer/inner

allocation without spatial structure and with continuous scenario space
I Broadie et al (OR 2012): linear regression plus two stage design
I Liu and Staum (WSC 2011): three-stage adaptive allocation

I Statistical Emulation
I Picheny et al (2012, 2015, 2017): surrogate models + active learning for level sets

(continuous search space, no replicates)
I Bauer et al (Astin 2012): LSMC regression for capital requirements (non-adaptive)
I Binois et al (JCGS 2018): specialized GP surrogate to handle stochastic simulators
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Gaussian Process Emulator

I Non-parametric regression, similar to splines or kernel regression

I Multivariate Gaussian structure to describe the shape of f (·): covariance matrix
Ci ,j = C (z i , z j). We used the isotropic Matern-5/2 family.

I MVN posterior f (z)|Dk ∼ N (mk(z), s2
k (z)): mean mk(zn) is proxy for f̂ (zn));

s2
k (zn) quantifies credibility

I R = Diag(r1
k , . . . , r

n
k ), ∆ = Diag(τ2(z1), . . . , τ2(zn))

mk(z)
.

= c(z)T (C + R−1∆k)−1yk ;

s2
k (z)

.
= C (z , z)− c(z)T (C + R−1∆k)−1c(z),

I Only need to work with the unique scenarios zn ∈ D
I State-dependent simulation variance: Treat the noise terms ∆’s as a latent spatial

process: ∆ = Cg (Cg + gR−1)−1Λ – hetGP: package
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Budget allocation

I. Initialize f̂0 by generating simulations over a subset of pilot scenarios.

LOOP : predict f̂k on Z to determine which scenarios are close to R.

II. Compute acquisition function aka weights H(zn), n = 1, . . .N

III. Allocate more inner simulations to scenarios with high weights: Generate
cashflows (Y i

t (zn))∞t=T and new yn,ik

IV. Batch of ∆r new simulations per round (computational speed-up)

V. Update emulator to f̂k+1 based on the new MC output.

END LOOP
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Further Details

Assigning Scenario Weights

I Heuristics H(z) about information gain from running more simulations at z –
greedy but still takes into account Exploration/Exploitation trade-off

I Stepwise Uncertainty Reduction: Hk+1|rnk+1=rnk +1 −Hk

I Active learning/simulation optimization/sequential design/knowledge gradient/....

I Take advantage of nesting to improve both accuracy and speed

Estimating Portfolio Risk

I Plug-in estimator based on the ranked posterior means m
(n)
k

I Risk measure is R =
∑N

n=1 w
nf (zn) with VaR: wn = 1{f (zn)=f (αN)}; TVaR:

wn = 1
αN · 1{f (zn)<f (αN)}.

I Smooth using Harrell-Davis L-estimator, R̂HD,VaR
k

.
=
∑

n w̃
(n)m

(n)
k
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Targeting the Quantile Level: ST-GP

I Targeted mean square error (Picheny et al 2012): tmsek(z)
.

= s2
k (z)Wk(z ; L, ε)

W VaR
k (z ; L, ε)

.
=

1√
2π(s2

k (z) + ε2)
exp

(
−1

2

(
mk(z)− L√
s2
k (z) + ε2

)2)
= φ(mk(z)− L, s2

k (z) + ε2)

I High when mk ' L or when posterior variance is large

I ε controls how aggressive is the search. Take ε = s(R̂HD
k ) – decreases in k

I Look-ahead variance (want s2
k+1(z)):

Vk(zn; zm)
.

= C(zn, zn)− c(zn)(C + ∆cand
k+1 )−1c(zn)T

∣∣
∆cand

k+1
=diag

(
τ̂2
k

(z1)

r1
k

,...,
τ̂2
k

(zm)

rm
k

+∆rk
,...,

τ̂2
k

(zN
′

)

rN
′

k

)

I Final criterion to minimize is total (integrated) tmse over all of Z conditional on

adding simulations at zk+1: ĤVaR,timse
k (z)

.
= 1

N

∑N
n=1 Vk(zn; z)W VaR

k (zn; R̂HD
k )

I For TVar: W TVaR
k (z ; R̂HD

k )
.

= 1√
2π(s2

k (z)+s2(R̂HD
k ))

Φ

(
R̂HD
k −mk (z)√

s2
k (z)+s2(R̂HD

k )

)
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Global Variance Minimization: SV-GP

I Consider the global updating effect of running new inner simulations ( Liu and
Staum 2010)

I Sample in parallel several different outer scenarios to minimize the posterior
estimator variance s2(R̂k+1)

I Freeze ŵn
k+1 = ŵn

k

I Optimize {r ′nk } such that
∑

n r
′n
k = ∆rk , r ′nk ≥ 0

uk∆
cand
k+1 uT

k where uT
k
.

= (C + ∆k)−1CŵT
k → min!

I More exploratory compared to ST-GP

I Also higher overhead and more “diffuse” design
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Adaptive Budget Allocation: VaR

k = 1 k = 30 k = 100

Sequential budget allocation by SV-GP at stages k = 1, 30, 100 to learn VaR0.005 in the 2-D
Black-Scholes case study. The blue line indicates the true quantile contour f (50). Each dot
represents an outer scenario zn (Stage-0 pilot scenarios in black); the respective size and color
are scaled non-linearly in rnk . Some scenarios receive as many as rnk ≈ 1200 scenarios (total
budget of N = 104).
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Adaptive Budget Allocation: TVaR

For TVaR, explore the entire tail, but still non-uniformly due to the spatial structure
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Toy Example

I Portfolio consisting of Call options

I Two underlying risks (+correlated):

dS1
t = S1

t

(
β − 1

2
σ2

1

)
dt + σ1dW

(1)
t , β = 0.04

dS2
t = S2

t

(
β − 1

2
σ2

2

)
dt + σ2(ρdW

(1)
t +

√
1− ρ2dW

(2)
t

Stock Position Initial Price Strike Maturity Volatility

S1 100 50 40 2 25%
S2 -50 80 85 3 35%

I Explicit formula for portfolio loss f (z) via Black-Scholes

Π(z1, z2) = EQ
[
e−β100

(
S1

2 − 40
)

+
− e−2β50

(
S2

3 − 85
)

+

∣∣∣ (S1
1 , S

2
1 ) = (z1, z2)

]
I Analytic bias and RMSE
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Important Comparisons

I Gain from adaptive allocation – S*-GP vs U1-GP

I Gain from sequential learning – S*-GP vs A3-GP

I Gain from spatial modeling – S*-GP vs BR-SA

I Further considerations: initialization; number of rounds/batch size; variations on
acquisition functions; variations on emulators

Bias
Approach Kernel RMSE k = 1 k = 10 k = 20 k = 50 k = 100

hetGP Matérn-5/2 57.52 166.065 113.925 97.751 37.158 28.066
hetGP Gaussian 68.06 91.475 104.427 74.874 52.716 48.249

SK Matérn-5/2 69.31 914.728 206.267 113.716 69.821 48.670

For the 2-D Black Scholes portfolio case study, average RMSE of R̂K across different GP
models/kernel families. We also report average bias bias(R̂k) across a selection of intermediate stages
k = 1, 10, 20, 50, 100. All methods use the ST-GP rule and are based on 100 macro-replications.
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Results for 2-D Example

VaR0.005 TVaR0.005

SD(R̂HD
K ) s RMSE |DK | SD(R̂K ) s RMSE |DK |

LB 44.35 40.42 46.77 1 47.29 53.48 47.42 1
ST-GP 50.57 48.55 50.59 121.52 59.12 55.17 61.46 118.27
SE-GP 50.48 50.71 74.03 116.12 93.36 87.83 95.70 111.79
SV-GP 56.50 48.28 60.53 305.03 55.78 54.76 56.65 163.08
SR-GP-1 63.27 61.90 69.74 112.43 61.48 55.34 61.86 165.27
SR-GP-2 50.45 49.82 50.52 180.97 61.66 61.56 62.13 193.46
A3-GP 61.07 54.18 60.83 292.83 63.57 59.92 63.18 297.44
U2-GP 68.76 55.91 68.47 194.55 64.92 67.77 64.87 194.64
U1-GP 695.33 560.52 2965.05 104 909.17 700.43 3003.07 104

For the 2-D Black Scholes case study w/N = 10000: SD(R̂HD
K ): sample standard deviation

(SD) over 100 macro-replications [smaller is better], s: average GP posterior standard
deviation of R̂K [should be close to SD], RMSE of R̂K (vis-a-vis exact quantile) [smaller is
better], |DK |: average final design size (100 pilot scenarios) [smaller is faster].
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Results for 2-D Example

Bias Uncertainty

VaR

TVaR

Var/TVaR estimation for the 2-D Black Scholes case study. Left boxplots display the distribution of
the final R̂TVaR

K estimates; on the right is corresponding GP standard deviation s(R̂TVaR
K ). Results are

based on 100 macro-replications for each approach.
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Life Annuity Case Study

Six-dimensional example valuing annuity portfolios: 3 factor longevity model M7 (APC
fitted StMoMo), 3 factor interest rates (SIR with SV+stoch r̄t). N = N = 105.

Estimated R̂K GP posterior uncertainty s(R̂K )

VaR0.005

TVaR0.005
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Results for 6D

VaR0.005 TVaR0.005

SD(R̂HD
K ) s RMSE |DK | SD(R̂K ) s RMSE |DK | Time

ST-GP 0.0394 0.0455 0.0403 151.83 0.0461 0.0404 0.0472 147.10 330
SE-GP 0.0427 0.0493 0.0459 143.27 0.2853 0.2717 0.2850 101.62 295
SV-GP 0.0382 0.0406 0.0380 497.81 0.0408 0.0393 0.0407 254.35 403
SR-GP-1 0.0467 0.0470 0.0485 135.03 0.0430 0.0402 0.0430 184.73 219
SR-GP-2 0.0391 0.0437 0.0434 217.36 0.0447 0.0431 0.0450 224.96 198
A3-GP 0.0434 0.0497 0.0436 298.15 0.0464 0.0490 0.0461 298.55 115
U2-GP 0.0598 0.0598 0.0596 194.03 0.0684 0.0601 0.0689 195.81 112
U1-GP 0.5020 0.4156 0.5853 104 0.4940 0.4705 0.6709 104 177

Results for the 6-D life annuity case study based on 100 macro-replications. We report sample

standard deviation of R̂
[1:100]
K , average GP posterior standard deviation s, and RMSE of R̂K , as

well as average final design size for each approach.

Mike Ludkovski Sequential VaR & GPs



Introduction GP Adaptive Results

Conclusions

I New links between machine learning/emulation tools and risk measurement

I Important gains thanks to sequential design + advanced emulator (hetGP)

I Tried a variety of acquisition functions, still more work to be done

I Future: make N also adaptive

Spatial model gives a variance reduction of x2− 5

Adaptive allocation gives a speed-up of x10− 40
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Spatial Modeling Gains via Adaptive Replication

Right: Replication counts rnK versus true rank of f 1:N after the final stage for sequential methods for
learning VaR in the 2-D Black-Scholes case study. Left: estimated f̂ (zn) vs true f (zn).
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