A Graphical Model Approach to Simulating Economic Variables over Long Horizons

Aniketh Pittea (Joint work with Jaideep Oberoi and Pradip Tapadar)

University of Kent, Canterbury, CT2 7NF, UK

Insurance Data Science Conference 2018 - Cass Business School

Acknowledgement: Institute and Faculty of Actuaries for sponsoring this research.

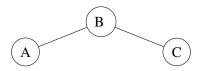
1 Introdution

- 2 Modelling
- **3** Simulations
- 4 Conclusions

Background

- Graphical models are probabilistic models for which a graph expresses the conditional dependence structure between random variables.
- We use graphical models to simulate economic variables over long time horizons.
- We show that the approach we use is:
 - transparent
 - flexible
 - easy to implement

∃ ► < ∃ ►</p>


Introdution

2 Modelling

3 Simulations

4 Conclusions

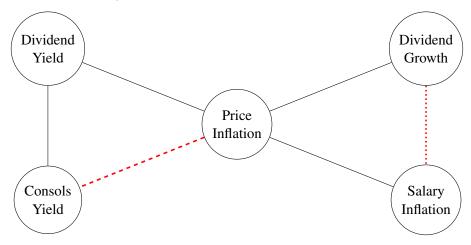
Methodology - forecasting

- Assume 3 economic variables A,B and C.
- The individual economic random variables, *Z_{it}s*, are modelled as:

$$Z_{it} = \mu_i + Y_{it}$$
, where $Y_{it} = \beta_i Y_{i(t-1)} + \varepsilon_{it}$ and $\varepsilon_{it} \sim N(0, \sigma_i^2)$.

- Correlation of the error terms is represented by a graphical model.
- The error terms:
 - are assumed to be independently distributed across time t;
 - which are directly connected to each other are dependent;
 - which are indirectly connected are still dependent, but more weakly so.

イロト イポト イヨト イヨト


Methodology

Methodology - selecting a correlation structure

- We use 3 algorithms to select a correlation structure, based on:
 - ► BIC
 - ► AIC
 - P-Values
- Hojsgaard et al. (2012). provide guidance on the use of packages written in R to estimate graphical models.
- We use the following UK economic time series data:
 - Price Inflation
 - Salary Inflation
 - Dividend Yield
 - Dividend Growth
 - Consols Yield

프 > < 프 >

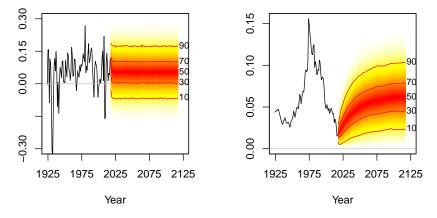
Structure using P-Values

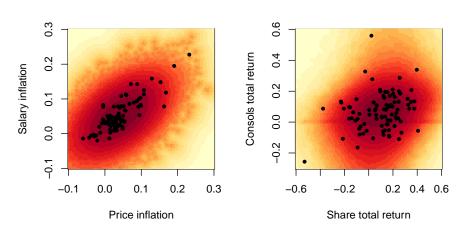
Graphical model with 6 edges

Pittea ((University	of Kent)
----------	-------------	----------

1 Introdution

2 Modelling


3 Simulations


Forecasts

Dividend Growth

Consols yield

Joint Distribution

< 口 > < 同

э

-

Introdution

2 Modelling

3 Simulations

Conclusion

Summary

- A simple AR(1) process combined with graphically modelled innovations can generate rich and reasonable distributions.
- Model can be extended to a wider range of economic variables and also for many different countries.

Reference paper

 OBEROI, J., PITTEA, A. & TAPADAR, P. (2018). A graphical model approach to simulating economic variables over long horizons. Working paper (Submitted).

Other references

- DRTON, M. & PERLMAN, M. D. (2008). A SINful approach to Gaussian graphical model selection. Journal of Statistical Planning and Inference, 138, 1179–1200.
- EDWARDS, D. (2012). Introduction to graphical modelling. Springer Science & Business Media.
- WILKE, A.D., SAHIN, S., CAIRNS, J.G. & KLEINOW, T. (2011). Yet more on a stochastic economic model: Part 1: updating and refitting, 1995 to 2009. Annals of Actuarial Science, 5, 53–99.