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Telematics Car Driving Data
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Available Car Driving Data

B Find structure (driving styles) in features

{x1, . . . ,xn} ⊂ X ,

of n insurance policies in a given feature space X .

• Data: 12’076 drivers with

? classical features like age, gender, type of car, prize of car, etc.,
? telematics data of all trips including GPS location (sec by sec), time stamp,
speed, acceleration (in all directions), engine revolutions per minute,

? claims data,

from 2014-2017 (1GB per day, 1.5TB in total).
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Two Different Approaches for Driving Styles

• Score individual trips.

• Build summary statistics per driver (law of large numbers) and score those.
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Normalized v-a Heatmaps

• Calculate v-a heatmap of all trips in speed bucket [5, 20)km/h for all n drivers.

• These heatmaps measure the amount of time spent in a (v, a) location.

• Normalization gives (discrete) probability distributions xi for drivers i = 1, . . . , n.
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v-a heatmaps of drivers i = 3, 44, 1001 in speed bucket [5, 20)km/h.
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Autoencoders for Data Compression

• Encoder:
ϕ : X → Z,

where Z is low-dimensional.

• Decoder:
ψ : Z → X .

• Goal: Choose functions ϕ and ψ such that

output π(x) = ψ ◦ ϕ(x) is close to input x.

B ϕ(x) ∈ Z is used as low-dimensional representation for x ∈ X .
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Principal Component Analysis (PCA)

• Consider the design matrix X = (x′1, . . . ,x
′
n)
′ ∈ Rn×d of rank d ≤ n.

• Singular value decomposition (SVD) provides (an) optimal approximation Xq of
design matrix X of (smaller) rank q ≤ d (in Frobenius norm).
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Bottleneck Neural Network Autoencoder
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• Calibrate bottleneck neural network such that inputs xi and outputs πi = π(xi)
are close in Kullback-Leibler (KL) divergence

LKL ((xi)i, (πi)i) =
1

n

n∑
i=1

dKL(xi‖πi).

• Signals at the bottleneck are the Z-representations of drivers i = 1, . . . , n.
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SVD vs. Bottleneck Network for q = 2
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• Predictive Power of v-a Heatmaps?
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Poisson GAM Regression Models

Assume for i = 1, . . . , n

Yi
ind.∼ Poi (λ(xi)vi) ,

with exposures vi > 0 and regression function λ : X → R+ given by

Model 0: log λ(x) = β0 + s1(age driver) + β2 · age car,

Model 1: log λ(x) = β0 + s1(age driver) + β2 · age car + β3 · PCA(heatmap),

Model 2: log λ(x) = β0 + s1(age driver) + β2 · age car + β3 · BN(heatmap).

cross-validation std. dev.
out-of-sample loss error

Model 0 (GAM classic) 1.4806 0.0240
Model 1 (PCA) 1.4573 0.0266
Model 2 (bottleneck net) 1.4579 0.0232
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Conclusions

• v-a heatmaps allow for low-dimensional representations and approximations.

• Do these heatmaps have predictive power? Preliminary analysis shows “yes”!

• We have central limit theorems and rate of convergence for v-a heatmaps.

• Other speed buckets and claim sizes?
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