Claims Frequency Modeling using Telematics Car Driving Data

Mario V. Wüthrich RiskLab, ETH Zurich

joint work with Guangyuan Gao & Shengwang Meng Renmin University, Beijing

Insurance Data Science Conference London, July 16, 2018

Telematics Car Driving Data

driver 20, trip number 7

acceleration / change in direction / speed

Available Car Driving Data

▷ Find structure (driving styles) in features

 $\{oldsymbol{x}_1,\ldots,oldsymbol{x}_n\}\ \subset\ \mathcal{X},$

of n insurance policies in a given feature space \mathcal{X} .

Data: 12'076 drivers with

- \star classical features like age, gender, type of car, prize of car, etc.,
- telematics data of all trips including GPS location (sec by sec), time stamp, speed, acceleration (in all directions), engine revolutions per minute,
- ★ claims data,

from 2014-2017 (1GB per day, 1.5TB in total).

Two Different Approaches for Driving Styles

- Score individual trips.
- Build summary statistics per driver (law of large numbers) and score those.

Normalized *v*-*a* **Heatmaps**

- Calculate v-a heatmap of all trips in speed bucket [5, 20)km/h for all n drivers.
- These heatmaps measure the amount of time spent in a (v, a) location.
- Normalization gives (discrete) probability distributions x_i for drivers i = 1, ..., n.

v-a heatmaps of drivers i = 3, 44, 1001 in speed bucket [5, 20)km/h.

Autoencoders for Data Compression

• Encoder:

$$\varphi: \mathcal{X} \to \mathcal{Z},$$

where \mathcal{Z} is low-dimensional.

• Decoder:

$$\psi: \mathcal{Z} \to \mathcal{X}$$

• Goal: Choose functions φ and ψ such that

output $\pi(\boldsymbol{x}) = \psi \circ \varphi(\boldsymbol{x})$ is close to input \boldsymbol{x} .

 $ightarrow \varphi(x) \in \mathcal{Z}$ is used as low-dimensional representation for $x \in \mathcal{X}$.

Principal Component Analysis (PCA)

- Consider the design matrix $X = (x'_1, \dots, x'_n)' \in \mathbb{R}^{n \times d}$ of rank $d \leq n$.
- Singular value decomposition (SVD) provides (an) optimal approximation X_q of design matrix X of (smaller) rank $q \leq d$ (in Frobenius norm).

SVD result of driver i = 3 for ranks q = 1, 2 (true heatmap on the left).

Bottleneck Neural Network Autoencoder

• Calibrate bottleneck neural network such that inputs x_i and outputs $\pi_i = \pi(x_i)$ are close in Kullback-Leibler (KL) divergence

$$\mathcal{L}_{\mathrm{KL}}\left((oldsymbol{x}_i)_i,(\pi_i)_i
ight) \;\;=\; rac{1}{n}\;\sum_{i=1}^n d_{\mathrm{KL}}(oldsymbol{x}_i\|\pi_i).$$

• Signals at the bottleneck are the \mathbb{Z} -representations of drivers $i = 1, \ldots, n$.

SVD vs. Bottleneck Network for q = 2

KL divergences of SVD and the bottleneck neural network

(drivers i = 3, 44, 300, 1001; 642, 1645).

• **Predictive Power of** *v*-*a* **Heatmaps?**

Poisson GAM Regression Models

Assume for i = 1, ..., n $Y_i \stackrel{\text{ind.}}{\sim} \operatorname{Poi}(\lambda(\boldsymbol{x}_i)v_i),$

with exposures $v_i > 0$ and regression function $\lambda : \mathcal{X} \to \mathbb{R}_+$ given by

Model 0: $\log \lambda(\boldsymbol{x}) = \beta_0 + s_1(\text{age driver}) + \beta_2 \cdot \text{age car},$

Model 1: $\log \lambda(\boldsymbol{x}) = \beta_0 + s_1(\text{age driver}) + \beta_2 \cdot \text{age car} + \beta_3 \cdot \text{PCA}(\text{heatmap}),$

Model 2: $\log \lambda(\boldsymbol{x}) = \beta_0 + s_1(\text{age driver}) + \beta_2 \cdot \text{age car} + \beta_3 \cdot \text{BN}(\text{heatmap}).$

	cross-validation	std. dev.
	out-of-sample loss	error
Model 0 (GAM classic)	1.4806	0.0240
Model 1 (PCA)	1.4573	0.0266
Model 2 (bottleneck net)	1.4579	0.0232

Conclusions

- *v*-*a* heatmaps allow for low-dimensional representations and approximations.
- Do these heatmaps have predictive power? Preliminary analysis shows "yes"!
- We have central limit theorems and rate of convergence for *v*-*a* heatmaps.
- Other speed buckets and claim sizes?