Claims Frequency Modeling using Telematics Car Driving Data

Mario V. Wüthrich
RiskLab, ETH Zurich

joint work with
Guangyuan Gao \& Shengwang Meng
Renmin University, Beijing
Insurance Data Science Conference
London, July 16, 2018

Telematics Car Driving Data

driver 20, trip number 7

acceleration / change in direction / speed

Available Car Driving Data

\triangleright Find structure (driving styles) in features

$$
\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathcal{X}
$$

of n insurance policies in a given feature space \mathcal{X}.

- Data: 12'076 drivers with
* classical features like age, gender, type of car, prize of car, etc.,
* telematics data of all trips including GPS location (sec by sec), time stamp, speed, acceleration (in all directions), engine revolutions per minute,
* claims data,
from 2014-2017 (1GB per day, 1.5TB in total).

Two Different Approaches for Driving Styles

- Score individual trips.
- Build summary statistics per driver (law of large numbers) and score those.

Normalized $v-a$ Heatmaps

- Calculate v - a heatmap of all trips in speed bucket $[5,20) \mathrm{km} / \mathrm{h}$ for all n drivers.
- These heatmaps measure the amount of time spent in a (v, a) location.
- Normalization gives (discrete) probability distributions \boldsymbol{x}_{i} for drivers $i=1, \ldots, n$.

$v-a$ heatmaps of drivers $i=3,44,1001$ in speed bucket $[5,20) \mathrm{km} / \mathrm{h}$.

Autoencoders for Data Compression

- Encoder:

$$
\varphi: \mathcal{X} \rightarrow \mathcal{Z}
$$

where \mathcal{Z} is low-dimensional.

- Decoder:

$$
\psi: \mathcal{Z} \rightarrow \mathcal{X}
$$

- Goal: Choose functions φ and ψ such that

$$
\text { output } \pi(\boldsymbol{x})=\psi \circ \varphi(\boldsymbol{x}) \text { is close to input } \boldsymbol{x} \text {. }
$$

$\triangleright \varphi(x) \in \mathcal{Z}$ is used as low-dimensional representation for $\boldsymbol{x} \in \mathcal{X}$.

Principal Component Analysis (PCA)

- Consider the design matrix $\boldsymbol{X}=\left(\boldsymbol{x}_{1}^{\prime}, \ldots, \boldsymbol{x}_{n}^{\prime}\right)^{\prime} \in \mathbb{R}^{n \times d}$ of rank $d \leq n$.
- Singular value decomposition (SVD) provides (an) optimal approximation \boldsymbol{X}_{q} of design matrix \boldsymbol{X} of (smaller) rank $q \leq d$ (in Frobenius norm).
true heatmap of driver 3

SVD(1) estimate of driver 3

SVD(2) estimate of driver 3

SVD result of driver $i=3$ for ranks $q=1,2$ (true heatmap on the left).

Bottleneck Neural Network Autoencoder

- Calibrate bottleneck neural network such that inputs \boldsymbol{x}_{i} and outputs $\pi_{i}=\pi\left(\boldsymbol{x}_{i}\right)$ are close in Kullback-Leibler (KL) divergence

$$
\mathcal{L}_{\mathrm{KL}}\left(\left(\boldsymbol{x}_{i}\right)_{i},\left(\pi_{i}\right)_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} d_{\mathrm{KL}}\left(\boldsymbol{x}_{i} \| \pi_{i}\right) .
$$

- Signals at the bottleneck are the \mathcal{Z}-representations of drivers $i=1, \ldots, n$.

SVD vs. Bottleneck Network for $q=2$

KL divergences of SVD and the bottleneck neural network

$$
\text { (drivers } i=3,44,300,1001 ; 642,1645) .
$$

- Predictive Power of $v-a$ Heatmaps?

Poisson GAM Regression Models

Assume for $i=1, \ldots, n$

$$
Y_{i} \stackrel{\text { ind. }}{\sim} \operatorname{Poi}\left(\lambda\left(\boldsymbol{x}_{i}\right) v_{i}\right),
$$

with exposures $v_{i}>0$ and regression function $\lambda: \mathcal{X} \rightarrow \mathbb{R}_{+}$given by

Model 0: $\quad \log \lambda(\boldsymbol{x})=\beta_{0}+s_{1}($ age driver $)+\beta_{2} \cdot$ age car,
Model 1: $\quad \log \lambda(\boldsymbol{x})=\beta_{0}+s_{1}($ age driver $)+\beta_{2} \cdot$ age car $+\beta_{3} \cdot$ PCA(heatmap),
Model 2: $\quad \log \lambda(\boldsymbol{x})=\beta_{0}+s_{1}($ age driver $)+\beta_{2} \cdot$ age car $+\beta_{3} \cdot \mathrm{BN}($ heatmap $)$.

	cross-validation out-of-sample loss	std. dev. error
Model 0 (GAM classic)	1.4806	0.0240
Model 1 (PCA)	1.4573	0.0266
Model 2 (bottleneck net)	1.4579	0.0232

Conclusions

- $v-a$ heatmaps allow for low-dimensional representations and approximations.
- Do these heatmaps have predictive power? Preliminary analysis shows "yes" !
- We have central limit theorems and rate of convergence for $v-a$ heatmaps.
- Other speed buckets and claim sizes?

