Statistical analysis of weather-related property insurance claims

Christian Rohrbeck¹ c.rohrbeck@lancaster.ac.uk

Joint work with Emma Eastoe, Arnoldo Frigessi and Jonathan Tawn

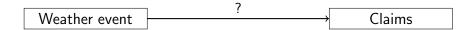
Department of Mathematics and Statistics & Data Science Institute

July 16, 2018

¹Beneficiary of an AXA Research Fund postdoctoral grant

Christian Rohrbeck

Data Science Institute, Lancaster University



Christian Rohrbeck

Data Science Institute, Lancaster University

Weather event

Claims

Hazards:

- Severe rainfall
- Thunderstorm

?

Christian Rohrbeck

Data Science Institute, Lancaster University

Weather event

Claims

Hazards:

Christian Rohrbeck

- Severe rainfall
- Thunderstorm
- Snow-melt

Events occur rarely and differ in length

?

Weather event

Hazards:

- Severe rainfall
- Thunderstorm
- Snow-melt

Events occur rarely and differ in length

?

Risks:

Localized flooding

Claims

- Sewage back-flow
- Blocked pipes

Lag in recording process

Christian Rohrbeck

Data I

Daily records for Norwegian municipalities for 1997-2006 on

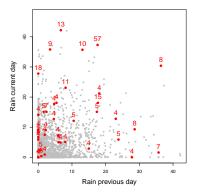
- Reported number of water-related claims N
- Amount of precipitation R
- Amount of snow S
- Surface run-off *D*
- Mean-temperature T

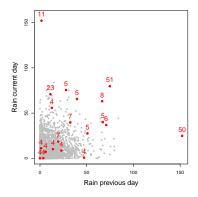
We aim to model N in dependence on $\mathbf{X} = (R, S, D, T)$.

Christian Rohrbeck

Data II

Oslo





Christian Rohrbeck

Data Science Institute, Lancaster University

Previous research

Scheel et al. (2013) propose a model of the form

$$\mathbb{P}(N = n \mid \mathbf{X}) = \begin{cases} \alpha(\mathbf{X}) & \text{if } n = 0, \\ [1 - \alpha(\mathbf{X})] \mathbb{P}(Y = n \mid \mathbf{X}, Y > 0) & \text{if } n > 0, \end{cases}$$

where Y is a Poisson random variable.

Statistical analysis of weather-related property insurance claims

Previous research

Scheel et al. (2013) propose a model of the form

$$\mathbb{P}(N = n \mid \mathbf{X}) = \begin{cases} \alpha(\mathbf{X}) & \text{if } n = 0, \\ [1 - \alpha(\mathbf{X})] \mathbb{P}(Y = n \mid \mathbf{X}, Y > 0) & \text{if } n > 0, \end{cases}$$

where Y is a Poisson random variable.

But Table 2 in Scheel et al. (2013) shows that their model underpredicts the highest claim numbers:

Period		Results for Oslo			Results for Bergen			
	Median	95% prediction interval	Observed ΣN_{kt}	Median	95% prediction interval	$Observed \Sigma N_{kt}$		
(a)	4 4 3 3	(0, 14) (1, 11) (0, 8) (0, 7)	11 11 8 7	3 3 2 2	(0, 8) (0, 7) (0, 6) (0, 7)	7 7 6 6		

Christian Rohrbeck

Data Science Institute, Lancaster University

Rohrbeck et al. (2018) extend Scheel et al. (2013) by

 Introducing a more flexible model using methodology from extreme value theory to handle the highest numbers of claims, Rohrbeck et al. (2018) extend Scheel et al. (2013) by

- Introducing a more flexible model using methodology from extreme value theory to handle the highest numbers of claims,
- Deriving additional predictors to incorporate the spatial and temporal behaviour of the rainfall and snow-melt,

Rohrbeck et al. (2018) extend Scheel et al. (2013) by

- Introducing a more flexible model using methodology from extreme value theory to handle the highest numbers of claims,
- Deriving additional predictors to incorporate the spatial and temporal behaviour of the rainfall and snow-melt,
- Proposing a clustering algorithm to merge days whose claims are probably related to the same severe weather event.

In the following, we will focus on the third point.

Motivation • Potential lag in the recording process

Event may effect claim dynamics on several days

Clustering algorithm I - Concept

Motivation Potential lag in the recording process

- Event may effect claim dynamics on several days
- **Trigger** Heavy rain $R_t > c$
 - Snow-melt $S_{t-1} S_t > 0$

Clustering algorithm I - Concept

Motivation Potential lag in the recording process

- Event may effect claim dynamics on several days
- **Trigger** Heavy rain $R_t > c$
 - Snow-melt $S_{t-1} S_t > 0$

Cluster end Small change in surface run-off $D_t - D_{t-1} \le d$

• No snow left on the ground $S_t = 0$

Christian Rohrbeck

Clustering algorithm I - Concept

Motivation Potential lag in the recording process

- Event may effect claim dynamics on several days
- Trigger Heavy rain $R_t > c$
 - Snow-melt $S_{t-1} S_t > 0$
- **Cluster end** Small change in surface run-off $D_t D_{t-1} \le d$
 - No snow left on the ground $S_t = 0$
 - **Predictors** Aggregated snow-melt $\Delta \hat{S}$
 - Aggregated rainfall R_{Σ}
 - Maximum daily rainfall R_{max}

Christian Rohrbeck

Clustered Data

Ν	D	S	Т	R_t
N_1	0.4	20.4	-8.3	11.2
N_2	0.4	31.6	-2.8	3.5
N ₃	0.7	28.1	2.0	0.0
N_4	1.3	18.8	3.1	1.0
N_5	2.0	8.8	3.3	9.0
N_6	2.4	4.6	1.6	2.0
N_7	2.4	4.6	-0.1	1.9

Ñ	$\Delta \tilde{S}$	R_{Σ}	R_{\max}

Christian Rohrbeck

Clustered Data

Ν	D	S	Т	R_t
N_1	0.4	20.4	-8.3	11.2
N_2	0.4	31.6	-2.8	3.5
N ₃	0.7	28.1	2.0	0.0
N_4	1.3	18.8	3.1	1.0
N_5	2.0	8.8	3.3	9.0
N_6	2.4	4.6	1.6	2.0
N_7	2.4	4.6	-0.1	1.9

$$\frac{\tilde{N}}{N_1} \qquad \Delta \tilde{S} \qquad R_{\Sigma} \qquad R_{\max}$$

Christian Rohrbeck

Data Science Institute, Lancaster University

Clustered Data

Ν	D	S	Т	R_t
N_1	0.4	20.4	-8.3	11.2
N_2	0.4	31.6	-2.8	3.5
N ₃	0.7	28.1	2.0	0.0
N_4	1.3	18.8	3.1	1.0
N_5	2.0	8.8	3.3	9.0
N_6	2.4	4.6	1.6	2.0
N_7	2.4	4.6	-0.1	1.9

Ñ	$\Delta \tilde{S}$	R_{Σ}	R_{\max}	
N_1	0.0	0.0	0.0	
N_2	0.0	0.0	0.0	

Christian Rohrbeck

Clustered Data

Ν	D	S	Т	R_t
N_1	0.4	20.4	-8.3	11.2
N_2	0.4	31.6	-2.8	3.5
N 3	0.7	28.1	2.0	0.0
N_4	1.3	18.8	3.1	1.0
N_5	2.0	8.8	3.3	9.0
N_6	2.4	4.6	1.6	2.0
N_7	2.4	4.6	-0.1	1.9

Ñ	$\Delta \tilde{S}$	R_{Σ}	R_{\max}	
N_1	0.0	0.0	0.0	
N_2	0.0	0.0	0.0	

Christian Rohrbeck

Clustered Data

Ν	D	S	Т	R
N_1	0.4	20.4	-8.3	11.2
N_2	0.4	31.6	-2.8	3.5
N ₃	0.7	28.1	2.0	0.0
N_4	1.3	18.8	3.1	1.0
N_5	2.0	8.8	3.3	9.0
N_6	2.4	4.6	1.6	2.0
N_7	2.4	4.6	-0.1	1.9

Ñ	$\Delta \tilde{S}$	R_{Σ}	R_{\max}
N_1	0.0	0.0	0.0
N_2	0.0	0.0	0.0
$\sum_{i=3}^{7} N_i$	27.0	3.0	9.0

Christian Rohrbeck

Data Science Institute, Lancaster University

Clustering algorithm III - Results

We set the thresholds c and d in the clustering algorithm as

$$c=q_{0.8}\left(R_t\mid R_t>0\right)$$

and

$$d = q_{0.8} \left(D_t - D_{t-1} \right).$$

This gave the following frequency of cluster lengths:

Cluster length in days	1	2	3	4	5	6	> 6
Oslo	2091	254	57	98	43	23	17
Bærum	2453	105	43	92	46	19	18
Bergen	1868	340	55	131	39	23	11

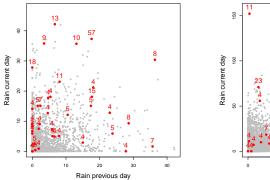
Christian Rohrbeck

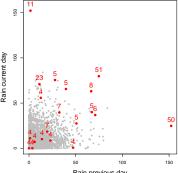
Data Science Institute, Lancaster University

Clustering algorithm IV - Results

Oslo

Bergen





Rain previous day

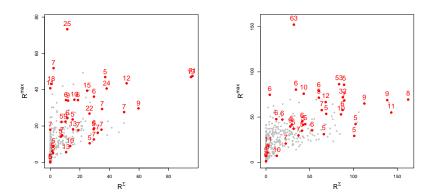
Christian Rohrbeck

Data Science Institute, Lancaster University

Clustering algorithm IV - Results

Oslo

Bergen



Christian Rohrbeck

Data Science Institute, Lancaster University

Statistical model

Model $N \mid (\mathbf{X}, N > 0)$ via a two-component mixture

$$N \mid (\mathbf{X}, N > 0) \sim egin{cases} Y \mid (\mathbf{X}, Y > 0) & ext{with probability } p, \ Z \mid Z > 0 & ext{with probability } 1 - p. \end{cases}$$

Statistical analysis of weather-related property insurance claims

Statistical model

Model $N \mid (\mathbf{X}, N > 0)$ via a two-component mixture

$$N \mid (\mathbf{X}, N > 0) \sim egin{cases} Y \mid (\mathbf{X}, Y > 0) & ext{with probability } p, \ Z \mid Z > 0 & ext{with probability } 1 - p. \end{cases}$$

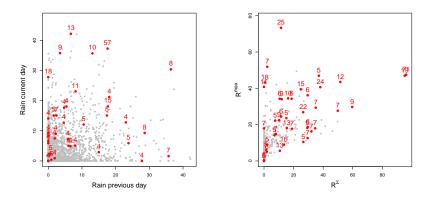
- Y corresponds to claims related to the observed rainfall and snow-melt
- Z represents claims due to unobserved processes or a high lag.
- Both Y and Z are Poisson distributed, but we replace the tail of Y with a distribution used in extreme value analysis.

Christian Rohrbeck

Results - Oslo

Original Data

Clustered Data



Data plot

Data plot

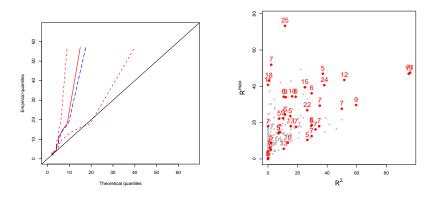
Christian Rohrbeck

Statistical analysis of weather-related property insurance claims

Results - Oslo

Original Data

Clustered Data



QQ plot

Data plot

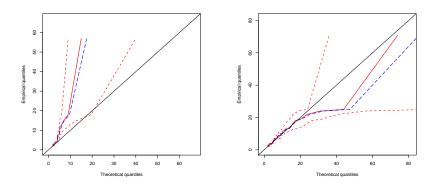
Christian Rohrbeck

Statistical analysis of weather-related property insurance claims

Results - Oslo

Original Data

Clustered Data



QQ plot

QQ plot

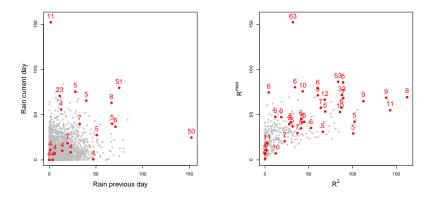
Christian Rohrbeck

Statistical analysis of weather-related property insurance claims

Results - Bergen

Original Data

Clustered Data



Data plot

Data plot

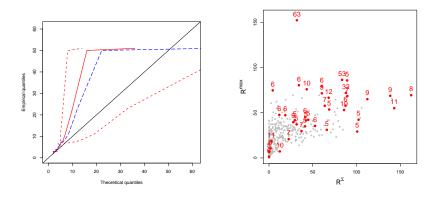
Christian Rohrbeck

Statistical analysis of weather-related property insurance claims

Results - Bergen

Original Data

Clustered Data



QQ plot

Data plot

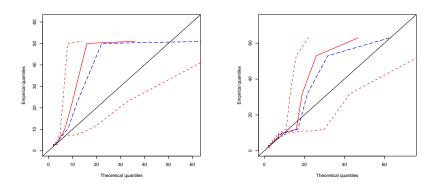
Christian Rohrbeck

Statistical analysis of weather-related property insurance claims

Results - Bergen

Original Data

Clustered Data



QQ plot

QQ plot

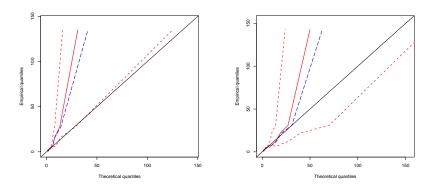
Christian Rohrbeck

Statistical analysis of weather-related property insurance claims

Results - Bærum

Original Data

Clustered Data



$\mathsf{Q}\mathsf{Q}$ plot

QQ plot

Christian Rohrbeck

Statistical analysis of weather-related property insurance claims

Current Research

- We want to consider all 430 municipalities.
- But: Days with a higher number of claims are very rare for rural municipalities.
- Idea: Share statistical information across municipalities.
- First step: Detect clusters of municipalities with similar severe rainfall pattern.

References

- Rohrbeck, C., Eastoe, E. F., Frigessi, A., and Tawn, J.A. (2018). Extreme-value modelling of water-related insurance claims. *Annals of Applied Statistics*, 12(1):246-282.
- Rohrbeck, C. and Tawn, J.A. (2018). Spatial clustering of extremal behaviour for hydrological variables. *In preparation.*
- Scheel, I., Ferkingstad, E., Frigessi, A., Haug, O., Hinnerichsen, M., and Meze-Hausken, E. (2013). A Bayesian hierarchical model with spatial variable selection: the effect of weather on insurance claims. *Journal of the Royal Statistical Society: Series C*, 62(1):85-100.

Thank you