A statistical modeling approach for car insurance pricing with telematics data

Roel Verbelen

joint work with Katrien Antonio and Gerda Claeskens

Faculty of Economics and Business KU Leuven, Belgium roel.verbelen@kuleuven.be feb.kuleuven.be/roel.verbelen

R in Insurance 2016 Cass Business School, London

July 11, 2016

ntroduction	Data	Model	Results
000	0000000	00000	00000000
What is tele	matics insurance?	Siljer 🥔	1

Synonyms: usage-based insurance (UBI) pay-as-you-drive (PAYD) pay-how-you-drive (PHYD)

- telematics is the integrated use of telecommunications and informatics;
- black-box device is installed in the vehicle;
- real driving behavior is monitored;
- allows for better risk assessment and personalized premiums based on individual driving data;
- · drives down the cost for low-mileage clients and good drivers;
- may fundamentally change the car insurance industry.

Model 00000 Results 00000000

Traditional rating variables

Self-reported information, including:

- age;
- · age driver's license;
- · vehicle year, make and model;
- catalog value;
- · engine power;
- · use of the vehicle;
- type of coverage;
- postal code;
- claims history.

• VEHICLE DETAILS (2) DRIVER DETAILS (3) DISCOUNTS			
VEHICLE 1	Number of Vehicles on this Quote: 1		
Your information is secure and will not be sold.	+ Add another vehicle 🚍		
Vehicle year	Please choose •		
Vehicle make	Please choose •		
/ehicle model	No options *		
s this vehicle leased?	No		
Purchase or lease date	Month • Year •		

Please Choose *

- ⇒ only proxy variables for the accident risk;
- ⇒ does not reflect the present pattern of driving behavior;
- \Rightarrow a lot of heterogeneity between drivers remains.

Introduction	
0000	

Model 00000 Results 00000000

Additional rating variables due to telematics technology

Telematics data collected in each trip:

- the distance driven;
- the time of day;
- · how long you have been driving;
- the location;
- the speed;
- harsh or smooth braking;
- aggressive acceleration or deceleration;
- your cornering and parking skills.

Possibly combined with:

- road maps;
- weather information;
- traffic information.

Introduction
0000

Model 00000 Results 00000000

Research goals

Goals of our contribution (see Verbelen, Antonio & Claeskens):

- (1) set-up data merge, cleaning, quality checks to combine traditional and telematics rating variables; (all coded in open source R: data.table)
- (2) develop the statistical methodology for pricing car insurance policies based on the high dimensional telematics data collected while driving;
- (3) combine traditional rating variables and telematics information in the claim frequency model;
 - $\rightarrow\,$ compare the performance of different sets of predictor variables (e.g. traditional vs purely telematics);
 - $\rightarrow\,$ discover the relevance and impact of adding telematics insights;
 - $\rightarrow\,$ contrast the use of time and distance as exposure to risk.

Introduction
0000

Data •0000000 Model 00000 Results 00000000

Telematics data set from a Belgian insurer

- Telematics data collected in between 2010 and 2014.
- Belgian MTPL product with telematics box targeted to young drivers.
- Daily CSV-files with trip info, aggregated on daily basis:
 - contract and voucher number;
 - ▶ start/end time;
 - number of trips;
 - meters traveled;
 - $\rightarrow\,$ divided by time slot: 6u-9u30, 9u30-16u, 16u-19u, 19u-22u, 22u-6u;
 - \rightarrow divided by road type: motorways, urban area, abroad, any other type.

Introduction	
0000	

Model 00000 Results 00000000

Flow of information

Introduction
0000

Data 00●00000 Model 00000 Results 00000000

Data quality

on	Data	Model
	0000000	0000

Results 00000000

Combined with policy information and claim counts

- Merged with traditional policy(holder) information by policy number and policy period:
 - policy: policy period, material damage cover;
 - ▶ policyholder: age, experience, sex, bonus-malus, postal code;
 - ► car: age vehicle, kwatt, fuel.
- Policy period is restricted to the time period in which telematics data is being captured.
- Technical failure at the turn of the year 2014 taken into account in these restrictions.
- Minimum policy duration of 30 days to be kept in the analysis;
- Linked with claim counts of MTPL claims at fault falling in between the restricted policy durations.

Introducti

Introduction
0000

Data 0000€000 Model 00000 Results 00000000

Description of the data

The resulting data set has 33259 observations:

- 10 406 unique policyholders;
- 17 681 years of insured periods;
- 0.0838 claims per insured year;

- 1481 MTPL claims at fault;
- 297 million kilometers driven;
- 0.0499 claims per 10 000 km.

What is the best measure of exposure to risk?

Introduction
0000

Data 00000●00 Model 00000 Results 00000000

Policy information

R: ggplot2, rgdal

Introduction		
0000		

Data 000000●0 Model 00000 Results 00000000

Telematics information

Introduction	Data	Model	Result
0000	0000000	00000	000

Predictor sets

Introduction
0000

Model •0000 Results 00000000

Claim count modeling

We model the frequencies of claims by constructing Poisson regression models (Denuit et al., 2007).

- *N_{it}*: number of claims for policyholder *i* = 1, ..., *I* in policy period *t* = 1, ..., *T_i*.
- $N_{it} \sim \mathsf{Poisson}(\mu_{it})$ with

$$P(N_{it} = n_{it}) = \frac{\exp(-\mu_{it})\mu_{it}^{n_{it}}}{n_{it}!}$$

• log linear relationship between the mean and the predictor variables

$$E(N_{it}) = \mu_{it} = \exp(\eta_{it}).$$

with η_{it} is a predictor function of the available explanatory variables.

Introduction	Data	Model
0000	0000000	00000

Generalized additive models

We use GAMs (Wood, 2006, R: mgcv) to define nonparametric relationships between the response and predictors

$$\begin{split} \eta_{it} &= \beta_0 + \text{offset} + \eta_{it}^{\text{cat}} + \eta_{it}^{\text{cont}} + \eta_{it}^{\text{spatial}} + \eta_{it}^{\text{re}} + \eta_{it}^{\text{comp}} \\ &= \beta_0 + \text{offset} + \mathbf{Z}_{it}\beta + \sum_{j=1}^J f_j(\mathbf{x}_{jit}) + f_s(\text{lat}_{it}, \text{long}_{it}) + \eta_{it}^{\text{re}} + \eta_{it}^{\text{comp}} \,, \end{split}$$

- parametric model terms for all categorical predictors;
- penalized cubic regression spline components *f_j* for all continuous variables;
- spatial term *f_s* as a smooth bivariate function of the coordinates of the postal code;
- · random effect term and compositional predictors;
- estimation using penalized iteratively reweighted least squares (P-IRLS);
- smoothing parameters selected using AIC.

Introduction
0000

Model 00€00 Results 00000000

Compositional data

- Divisions of the total distance driven in the different categories: road type (4), time slot (5), week/weekend (2)
 - $\rightarrow\,$ highly correlated with and sums up to total distance driven;
 - \rightarrow perfect multicollinearity problem;
 - $\rightarrow\,$ standard regression interpretation does not hold.
- We divide the divisions by the total distance since they only contribute relative information;
 - \rightarrow positive components that sum to one;
 - \rightarrow compositional data (R: compositions);
 - \rightarrow classical statistical techniques incoherent on compositions;
 - \rightarrow special vector space structure has to be taken into account.

Introduction
0000

Model 000●0 Results 00000000

Compositional predictors

From a methodological point of view this is the novelty of our work.

- We show how to include the compositional data as predictors in the regression,
- ... and how to interpret their effect on the average claim frequency;
- We present a solution for structural zeros as predictors;
- As such, we extend both the actuarial pricing literature as well as the statistical literature on regression with compositional data.

Introduction
0000

Model 0000 Results 00000000

Model selection and assessment

• AIC is used as a global goodness-of-fit measure.

$$AIC = -2 \cdot \log \mathcal{L} + 2 \cdot tr(\boldsymbol{H})$$

where \boldsymbol{H} denotes the hat or smoothing matrix.

- For each predictor set, variables are selected using an exhaustive search over all the possible combinations. The best model according to AIC is retained.
- Predictive performance is assessed using proper scoring rules for count data (Czado et al., 2009) with 10-fold cross validation

$$\operatorname{CV}(s) = \frac{1}{\sum_{i=1}^{I} T_i} \sum_{i=1}^{I} \sum_{t=1}^{T_i} s(\widehat{P}_{it}^{-\kappa_{it}}, n_{it}),$$

where s is a scoring rule and $\widehat{P}_{it}^{-\kappa_{it}}$ is the predictive distribution of the observed claim count n_{it} estimated with the κ_{it} th part of the data removed.

Introduction	
0000	

Model 00000 Results •0000000

Results: model selection

	Predictor	Classic	Time hybrid	Meter hybrid	Telematics
	Time	×	×		
	Age				
	Experience	×	×	×	
	Sex	×			
<u>i</u>	Material	×	×	×	
6	Postal code	×	×	×	
-	Bonus-malus	×	×	×	
	Age vehicle	×	×	×	
	Kwatt		×	×	
	Fuel	×	×	×	
	Distance			×	×
S	Yearly distance		×		
Ĩ	Average distance		×	×	
Ĕ	Road type 1111		×	×	×
e.	Road type 0111		×	×	×
H	Time slot		×	×	×
	Week/weekend		×	×	×

Introduction	
0000	

Model 00000 Results 00000000

Results: model assessment

Prodictor cot	EDE	AIC		logS		QS		SphS	
Fredictor set	LDF	value	rank	value	rank	value	rank	value	rank
Classic	32.15	11 896	4	0.1790	4	-0.918 58	4	-0.958 22	4
Time hybrid	39.66	11 727	1	0.1764	1	-0.91910	1	-0.95837	1
Meter hybrid	41.47	11736	2	0.1766	2	-0.91908	2	-0.95836	2
Telematics	18.05	11 890	3	0.1787	3	-0.91860	3	-0.95822	3

- Significant impact of the use of telematics data;
- Time hybrid is the best model according to AIC and all proper scoring rules;
- Using only telematics predictors is even better than the use of traditional rating variables.

Introduction
0000

Model 00000 Results 00000000

Telematics

Introduction	
0000	

Model 0000C Results 00000000

Time hybrid - Policy information

Introduction
0000

Model 00000 Results 000000000

Time hybrid - Telematics information

Introduction
0000

Model 00000 Results 00000000

Conclusions

- Statistical methodology developed to incorporate new data structures provided through telematics in models for claim frequencies.
- Telematics information improves predictive power.
 - ► Gender plays no role anymore in models incorporating telematics information (cfr. Gender Directive).
 - Spatial heterogeneity decreases.
 - Time hybrid model incorporating telematics through additional risk factors is optimal.
 - ► Classic approach performed worse.
- Similar results using negative binomial regression and using exposure as offset.

Introduction
0000

Model 00000 Results 0000000

References

