A statistical modeling approach for car insurance pricing with telematics data

Roel Verbelen

joint work with Katrien Antonio and Gerda Claeskens

Faculty of Economics and Business
KU Leuven, Belgium
roel.verbelen@kuleuven.be
feb.kuleuven.be/roel.verbelen

R in Insurance 2016
Cass Business School, London

July 11, 2016

What is telematics insurance?

Synonyms: usage-based insurance (UBI) pay-as-you-drive (PAYD) pay-how-you-drive (PHYD)

- telematics is the integrated use of telecommunications and informatics;
- black-box device is installed in the vehicle;
- real driving behavior is monitored;
- allows for better risk assessment and personalized premiums based on individual driving data;
- drives down the cost for low-mileage clients and good drivers;
- may fundamentally change the car insurance industry.

Traditional rating variables

Self-reported information, including:

- age;
- age driver's license;
- vehicle year, make and model;
- catalog value;
- engine power;
- use of the vehicle;
- type of coverage;
- postal code;
- claims history.

VEHICLE 1

\Rightarrow only proxy variables for the accident risk;
\Rightarrow does not reflect the present pattern of driving behavior;
\Rightarrow a lot of heterogeneity between drivers remains.

Additional rating variables due to telematics technology

Telematics data collected in each trip:

- the distance driven;
- the time of day;
- how long you have been driving;
- the location;
- the speed;
- harsh or smooth braking;
- aggressive acceleration or deceleration;
- your cornering and parking skills.

Possibly combined with:

- road maps;
- weather information;
- traffic information.

Research goals

Goals of our contribution (see Verbelen, Antonio \& Claeskens):
(1) set-up data merge, cleaning, quality checks to combine traditional and telematics rating variables; (all coded in open source R : data.table)
(2) develop the statistical methodology for pricing car insurance policies based on the high dimensional telematics data collected while driving;
(3) combine traditional rating variables and telematics information in the claim frequency model;
\rightarrow compare the performance of different sets of predictor variables (e.g. traditional vs purely telematics);
\rightarrow discover the relevance and impact of adding telematics insights;
\rightarrow contrast the use of time and distance as exposure to risk.

Telematics data set from a Belgian insurer

- Telematics data collected in between 2010 and 2014 .
- Belgian MTPL product with telematics box targeted to young drivers.
- Daily CSV-files with trip info, aggregated on daily basis:
- contract and voucher number;
- start/end time;
- number of trips;
- meters traveled;
\rightarrow divided by time slot: 6u-9u30, $9 \mathrm{u} 30-16 \mathrm{u}, 16 \mathrm{u}-19 \mathrm{u}, 19 \mathrm{u}-22 \mathrm{u}, 22 \mathrm{u}-6 \mathrm{u}$;
\rightarrow divided by road type: motorways, urban area, abroad, any other type.

Flow of information

Data quality

Combined with policy information and claim counts

- Merged with traditional policy(holder) information by policy number and policy period:
- policy: policy period, material damage cover;
- policyholder: age, experience, sex, bonus-malus, postal code;
- car: age vehicle, kwatt, fuel.
- Policy period is restricted to the time period in which telematics data is being captured.
- Technical failure at the turn of the year 2014 taken into account in these restrictions.
- Minimum policy duration of 30 days to be kept in the analysis;
- Linked with claim counts of MTPL claims at fault falling in between the restricted policy durations.

Description of the data

The resulting data set has 33259 observations:

- 10406 unique policyholders;
- 17681 years of insured periods;
- 0.0838 claims per insured year;
- 1481 MTPL claims at fault;
- 297 million kilometers driven;
- 0.0499 claims per 10000 km.

What is the best measure of exposure to risk?

Policy information

Proportion

R: ggplot2, rgdal

Telematics information

Predictor sets

Claim count modeling

We model the frequencies of claims by constructing Poisson regression models (Denuit et al., 2007).

- $N_{i t}$: number of claims for policyholder $i=1, \ldots, I$ in policy period $t=1, \ldots, T_{i}$.
- $N_{i t} \sim \operatorname{Poisson}\left(\mu_{i t}\right)$ with

$$
P\left(N_{i t}=n_{i t}\right)=\frac{\exp \left(-\mu_{i t}\right) \mu_{i t}^{n_{i t}}}{n_{i t}!}
$$

- log linear relationship between the mean and the predictor variables

$$
E\left(N_{i t}\right)=\mu_{i t}=\exp \left(\eta_{i t}\right) .
$$

with $\eta_{i t}$ is a predictor function of the available explanatory variables.

Generalized additive models

We use GAMs (Wood, 2006, R: mgcv) to define nonparametric relationships between the response and predictors

$$
\begin{aligned}
\eta_{i t} & =\beta_{0}+\text { offset }+\eta_{i t}^{\text {cat }}+\eta_{i t}^{\text {cont }}+\eta_{i t}^{\text {spatial }}+\eta_{i t}^{\text {re }}+\eta_{i t}^{\text {comp }} \\
& =\beta_{0}+\text { offset }+\boldsymbol{Z}_{i t} \boldsymbol{\beta}+\sum_{j=1}^{J} f_{j}\left(x_{j i t}\right)+f_{s}\left(\text { lat }_{i t}, \text { long }_{i t}\right)+\eta_{i t}^{\text {re }}+\eta_{i t}^{\text {comp }}
\end{aligned}
$$

- parametric model terms for all categorical predictors;
- penalized cubic regression spline components f_{j} for all continuous variables;
- spatial term f_{s} as a smooth bivariate function of the coordinates of the postal code;
- random effect term and compositional predictors;
- estimation using penalized iteratively reweighted least squares (P-IRLS);
- smoothing parameters selected using AIC.

Compositional data

- Divisions of the total distance driven in the different categories: road type (4), time slot (5), week/weekend (2)
\rightarrow highly correlated with and sums up to total distance driven;
\rightarrow perfect multicollinearity problem;
\rightarrow standard regression interpretation does not hold.
- We divide the divisions by the total distance since they only contribute relative information;
\rightarrow positive components that sum to one;
\rightarrow compositional data (R: compositions);
\rightarrow classical statistical techniques incoherent on compositions;
\rightarrow special vector space structure has to be taken into account.

Compositional predictors

From a methodological point of view this is the novelty of our work.

- We show how to include the compositional data as predictors in the regression,
- ... and how to interpret their effect on the average claim frequency;
- We present a solution for structural zeros as predictors;
- As such, we extend both the actuarial pricing literature as well as the statistical literature on regression with compositional data.

Model selection and assessment

- AIC is used as a global goodness-of-fit measure.

$$
\mathrm{AIC}=-2 \cdot \log \mathcal{L}+2 \cdot \operatorname{tr}(\boldsymbol{H})
$$

where \boldsymbol{H} denotes the hat or smoothing matrix.

- For each predictor set, variables are selected using an exhaustive search over all the possible combinations. The best model according to AIC is retained.
- Predictive performance is assessed using proper scoring rules for count data (Czado et al., 2009) with 10 -fold cross validation

$$
\mathrm{CV}(s)=\frac{1}{\sum_{i=1}^{\prime} T_{i}} \sum_{i=1}^{\prime} \sum_{t=1}^{T_{i}} s\left(\widehat{P}_{i t}^{-\kappa_{i t}}, n_{i t}\right)
$$

where s is a scoring rule and $\widehat{P}_{i t}^{-\kappa_{i t}}$ is the predictive distribution of the observed claim count $n_{i t}$ estimated with the $\kappa_{i t}$ th part of the data removed.

Results: model selection

	Predictor	Classic	Time hybrid	Meter hybrid	Telematics
$\frac{\stackrel{\rightharpoonup}{0}}{0}$	Time	\times	\times		
	Age				
	Experience	\times	\times	\times	
	Sex	\times			
	Material	\times	\times	\times	
	Postal code	\times	\times	\times	
	Bonus-malus	\times	\times	\times	
	Age vehicle	\times	\times	\times	
	Kwatt		\times	\times	
	Fuel	\times	\times	\times	
	Distance			\times	\times
	Yearly distance		\times		
	Average distance		\times	\times	
	Road type 1111		\times	\times	\times
	Road type 0111		\times	\times	\times
	Time slot		\times	\times	\times
	Week/weekend		\times	\times	\times

Results: model assessment

| Predictor set | EDF | AIC | | $\log S$ | | QS | | SphS | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | value | rank | value | rank | value | rank | value | rank |
| Classic | 32.15 | 11896 | 4 | 0.1790 | 4 | -0.91858 | 4 | -0.95822 | 4 |
| Time hybrid | 39.66 | 11727 | 1 | 0.1764 | 1 | -0.91910 | 1 | -0.95837 | 1 |
| Meter hybrid | 41.47 | 11736 | 2 | 0.1766 | 2 | -0.91908 | 2 | -0.95836 | 2 |
| Telematics | 18.05 | 11890 | 3 | 0.1787 | 3 | -0.91860 | 3 | -0.95822 | 3 |

- Significant impact of the use of telematics data;
- Time hybrid is the best model according to AIC and all proper scoring rules;
- Using only telematics predictors is even better than the use of traditional rating variables.

Classic

	Predictor
$\frac{. \bar{u}}{0}$	Time
	Age
	Experience
	Sex
	Material
	Postal code
	Bonus-malus
	Age vehicle
	Kwatt
	Fuel

Multiplicative Response Effect

Material damage cover

Telematics

	Predictor
	Distance
	Yearly distance
	Average distance
	Road type 1111
	Road type 0111
	Time slot
	Week/weekend

Time hybrid - Policy information

	Predictor
$\frac{. \overline{0}}{0}$	Time
	Age
	Experience
	Sex
	Material
	Postal code
	Bonus-malus
	Age vehicle
	Kwatt
	Fuel

Time hybrid - Telematics information

	Predictor
	Distance
	Yearly distance
	Average distance
	Road type 1111
	Road type 0111
	Time slot
	Week/weekend

Conclusions

- Statistical methodology developed to incorporate new data structures provided through telematics in models for claim frequencies.
- Telematics information improves predictive power.
- Gender plays no role anymore in models incorporating telematics information (cfr. Gender Directive).
- Spatial heterogeneity decreases.
- Time hybrid model incorporating telematics through additional risk factors is optimal.
- Classic approach performed worse.
- Similar results using negative binomial regression and using exposure as offset.

References

Verbelen, R., Antonio, K., and Claeskens, G. (2016)
A statistical modeling approach for car insurance pricing with telematics data.
Working paper.
F Wood, S. (2006)
Generalized additive models: an introduction with R Chapman and Hall/CRC Press.
家
Hron, K., Filzmoser, P., and Thompson, K. (2012)
Linear regression with compositional explanatory variables. Journal of Applied Statistics, 39(5):1115-1128.
國 Van den Boogaart, K. G. and Tolosana-Delgado, R. (2013) Analyzing compositional data with R.
Springer.

