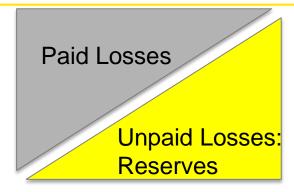
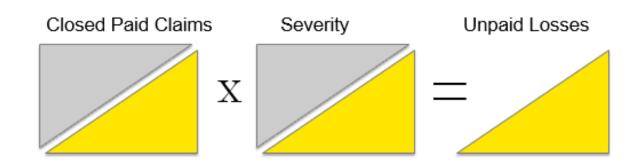
#### Inflation Modelling & Forecasting under high volatility circumstances


Marcela Granados, Satraajeet Mukherjee, Tvisha Gupta

"R in Insurance" conference London, United Kingdom July 11<sup>th</sup>, 2016

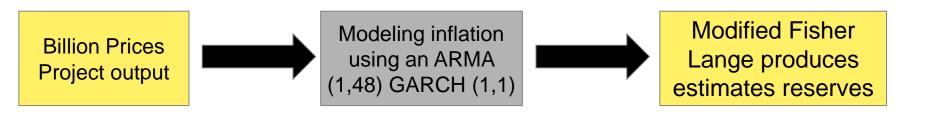


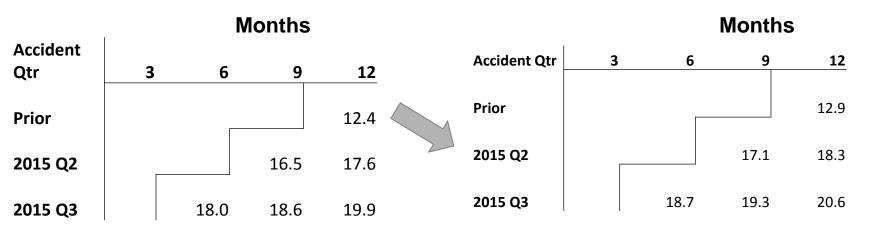

#### Reserves





- Why are they important?
- Why do you need actuaries?



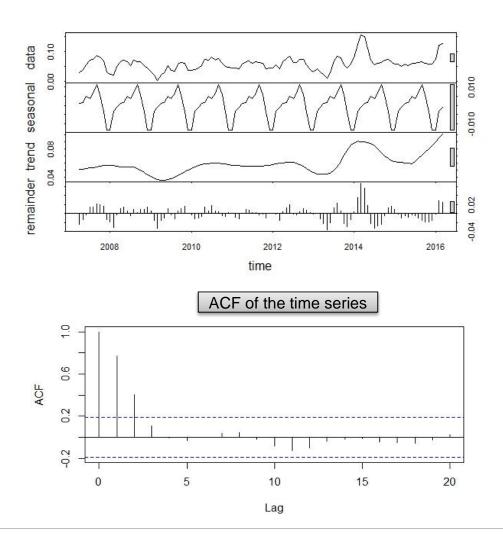


What reserving packages does R have?

#### **Challenges in Reserving**

- Higher uncertainty in reserving for long tail lines of business (common in Liability lines) due to longer reporting and settlement delays
- Impact of changing economic environment on frequency and severity of claims
- High and changing inflation over different time periods
- > Most of the traditional actuarial methods fail due to high and unstable inflation
- Unreliable data to estimate inflation which is one of the most important assumptions in reserving for many developing countries like Argentina

### **Reserve and Inflation**

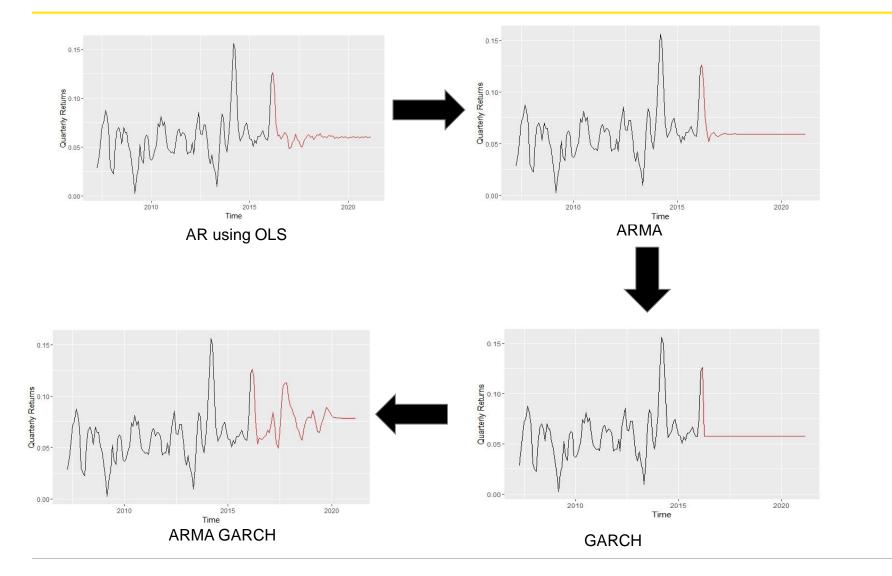





30% inflation yields \$103.2 M in reserves

**Leverage Effect**: A 1% increase in inflation (31%) results in an increase of 3% in reserves

\* Scaled by a factor


### Initial analysis of the time series



Decomposition of the time series into seasonal and trend components

The remainder left after removing the seasonal and trend components is heteroscedastic as well.

# **Inflation Model Evolution**



Page 6

### **The Model**

ARMA(m,n)+GARCH(p,q) equation is given by

$$y_t = c + \sum_{i=1}^m \varphi_i y_{t-i} + \sum_{j=1}^n \theta_j \tau_{t-j} + \tau_t$$

Where 
$$\tau_t = \varepsilon_t * \sigma_t \longrightarrow$$

 $\sigma_t$  follows the GARCH(p,q) model where GARCH(p,q) model is described by

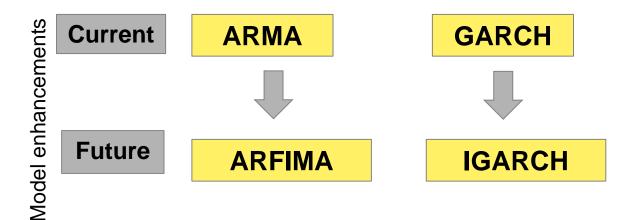
$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \, \varepsilon_{t-i}^2 + \sum_{j=1}^q \beta_j \, \sigma_{t-j}^2$$

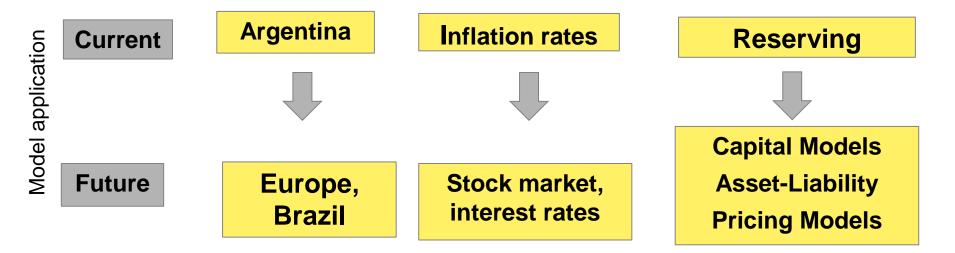
is a sequence of i.i.d (0,1) random variables

## **Model Iterations**

#### Model Execution in R

fgarch.fitted <- fGarch::garchFit(~ arma(1,48)+garch(1,1), data = rate, trace = FALSE)
forecast <- predict(fgarch.fitted, n.ahead = 60)</pre>


| Model Specification   | LLH   | AIC Pe | rsistence | MAPE |  |  |  |  |
|-----------------------|-------|--------|-----------|------|--|--|--|--|
| ARMA(1,48)+GARCH(1,1) | 683.6 | -11.7  | 0.9       | 6.3% |  |  |  |  |
| ARMA(2,48)+GARCH(1,1) | 611.2 | -10.3  | 0.9       | 9.4% |  |  |  |  |
| ARMA(1,48)+GARCH(1,2) | 598.4 | -10.1  | 0.9       | 6.4% |  |  |  |  |
| ARMA(2,48)+GARCH(1,2) | 609.8 | -10.3  | 0.9       | 6.8% |  |  |  |  |
| ARMA(1,36)+GARCH(1,1) | 517.2 | -8.8   | 0.9       | 7.2% |  |  |  |  |
| ARMA(2,36)+GARCH(1,1) | 535.9 | -9.1   | 0.9       | 7.3% |  |  |  |  |
| ARMA(1,36)+GARCH(1,2) | 533.3 | -9.1   | 0.9       | 7.3% |  |  |  |  |
| ARMA(2,36)+GARCH(1,2) | 533.3 | -9.1   | 0.9       | 7.3% |  |  |  |  |


Comparison of Models

#### Iterations on diff. frequencies of data – monthly, quarterly, annual, etc.

| Model Specification               | <b>Original Reserves</b> | New Reserves  | % Change Ou | t-of-Sample Error Walk Forward Tests |
|-----------------------------------|--------------------------|---------------|-------------|--------------------------------------|
| ARMA(1,48)+GARCH(1,1) - Monthly   | 3,100,255,266            | 4,170,333,320 | 34.5%       | 46.95% Walk Forwards Okay            |
| ARMA(1,48)+GARCH(1,1) - Quarterly | 3,100,255,266            | 4,225,801,893 | 36.3%       | 29.38% Good Walk Forwards            |







# Bibliography

- Reserving in Uncertain Economic Conditions
  - Alejandro Ortega, FCAS
  - ▶ Tony Milano, FCAS WCIRB
  - Marcela Granados, FCAS EY
- Time Series Analysis with Applications in R
  - Jonathan D. Cryer, University of Iowa
  - Kung-Sik Chan, University of Iowa
- Time Series Analysis and Applications
  - Robert H. Shumway, University of California
  - David S. Stoffer, University of Pittsburgh
- A Bayesian non-linear model for forecasting insurance loss payments
  - Yanwei Zhang, CNA Insurance Company, Chicago, USA
- Computational Actuarial Science with R
  - Markus Gesmann
- Online and Official Price Indexes: Measuring Argentina's Inflation
  - Alberto Cavallo, Massachusetts Institute of Technology
- Actual inflation rates taken from "The Billion Prices Project @ MIT"
  - http://bpp.mit.edu/