Implementing CreditRisk⁺ in R Using the Fast Fourier Transform

Alexander J. McNeil

Maxwell Institute of Mathematical Sciences

Heriot-Watt University, Edinburgh

R in Insurance Conference, Cass Business School, 15 July 2013

★ E ► ★ E ►

What Is Credit Risk?

"Credit risk is the risk that the value of a portfolio changes due to unexpected changes in the credit quality of issuers or trading partners. This subsumes both losses due to defaults and losses due to downgradings of obligors in a rating system."

> obligor = a counterparty who has a financial obligation to us; for example, a debtor who owes us money, a bond issuer who promises interest, or a counterparty in an OTC derivatives transaction.

default = failure to fulfil that obligation, for example, failure to repay loan or pay interest/coupon on a loan/bond; generally due to lack of liquidity or insolvency; may entail bankruptcy.

Overview

The CreditRisk⁺ Actuarial Model

- Structure of Model
- Relation to Bernoulli Mixture Models
- The Exposure Band Concept
- Compound Distributions

2 Computing Loss Distribution with FFT

- Theory
- Practice
- Note on Calibration

1 The CreditRisk⁺ Actuarial Model

- Structure of Model
- Relation to Bernoulli Mixture Models
- The Exposure Band Concept
- Compound Distributions

Definition of CreditRisk⁺

- Let *Y*₁,..., *Y*_m denote the number of defaults for each obligor
 i = 1,..., *m* in a fixed time interval. (Multiple defaults are allowed but have small probability.)
- Assume that, conditional on factors $\Psi = \psi$, the variables $\tilde{Y}_1, \ldots, \tilde{Y}_m$ are independent Poisson.
- Assume that, conditional on $\Psi = \psi$, $ilde{Y}_i \sim \mathsf{Poi}(\lambda_i(\psi))$ where

$$\lambda_i(\boldsymbol{\psi}) = \boldsymbol{k}_i \mathbf{w}'_i \boldsymbol{\psi}$$

for $k_i > 0$ and weight vectors $\mathbf{w}_i = (w_{i1}, \dots, w_{ip})'$ satisfying $\sum_{j=1}^{p} w_{ij} = 1$.

- The factors $\Psi = (\Psi_1, \dots, \Psi_p)'$ are independent.
- $\Psi_j \sim \text{Ga}(\sigma_j^{-2}, \sigma_j^{-2})$ for some value σ_j^2 which is the variance of Ψ_j .

Structure of Model Relation to Bernoulli Mixture Models The Exposure Band Concept Compound Distributions

Commentary on CreditRisk⁺

- Often referred to an an actuarial model.
- Gamma mixtures of Poissons are quite widely used to model numbers of losses in non-life insurance.
- We can compute unconditional distributions relatively easily.
- Let $\tilde{M} = \sum_{i=1}^{m} \tilde{Y}_i$ denote the total number of defaults. We can show that the distribution of \tilde{M} is a sum (convolution) of independent negative binomial distributions:

$$\begin{split} \tilde{M} \stackrel{d}{=} \sum_{j=1}^{p} \tilde{M}_{j} \; , \\ \tilde{M}_{j} \sim \mathsf{NB} \left(\sigma_{j}^{-2}, \frac{1}{1 + \sigma_{j}^{2} \sum_{i=1}^{m} w_{ij} k_{i}} \right) \end{split}$$

Poisson-Gamma Mixtures

Assume

•
$$N \mid \Lambda = \lambda \sim \mathsf{Poi}(\lambda)$$

Then $N \sim NB(\alpha, \beta/(\beta + 1))$, a negative binomial distribution. Writing $p = \beta/(\beta + 1)$ the pmf is

$$P(N=k) = \binom{\alpha+k-1}{k} p^{\alpha} (1-p)^k, \quad \alpha > 0, 0$$

where, for $x \in \mathbb{R}$ and $k \in \{0, 1, 2, \ldots\}$,

$$\binom{x}{k} = \frac{x(x-1)\cdots(x-k+1)}{k!}$$

is the extended binomial coefficient.

The CreditRisk⁺ Actuarial Model

- Structure of Model
- Relation to Bernoulli Mixture Models
- The Exposure Band Concept
- Compound Distributions

Structure of Model Relation to Bernoulli Mixture Models The Exposure Band Concept Compound Distributions

General Form of Bernoulli Mixtures

- These are examples of reduced form models in which a simple statistical approach to dependent defaults is taken.
- Definition. Given some *p* < *m* and a *p*-dimensional random vector Ψ = (Ψ₁,...,Ψ_p)', the default indicator vector Y follows a Bernoulli mixture model with factor vector Ψ if there are functions *p_i* : ℝ^p → (0, 1), such that conditional on Ψ the components of Y are independent Bernoulli rvs with *P*(Y_i = 1 | Ψ = ψ) = *p_i*(ψ).
- The crucial assumption is that of conditional independence given factors, which makes these models relatively easy to analyze.
- The multivariate Merton Model, which underlies the Creditmetrics and Moody's portfolio credit risk solutions, implies a Bernoulli mixture models for default events.

CreditRisk⁺ as a Bernoulli Mixture Model

• Let
$$Y_i = I_{\{\tilde{Y}_i > 0\}}$$
 for $i = 1, ..., m$.

- The default indicators Y₁,..., Y_m follow a Bernoulli mixture model with factor vector Ψ.
- The conditional probabilities of default satisfy

$$p_i(\psi) = 1 - \exp(-k_i \mathbf{w}'_i \psi).$$

The unconditional probability of default satisfies

$$p_i = E(p_i(\Psi)) = E(1 - \exp(-k_i \mathbf{w}_i' \Psi))$$

$$\approx k_i E(\mathbf{w}_i' \Psi) = k_i$$

The CreditRisk⁺ Actuarial Model

- Structure of Model
- Relation to Bernoulli Mixture Models
- The Exposure Band Concept
- Compound Distributions

Structure of Model Relation to Bernoulli Mixture Models The Exposure Band Concept Compound Distributions

The Exposure Band Concept

- For i = 1, ..., m assume that obligor losses take the form $L_i = e_i \tilde{Y}_i$. LGDs will not be considered.
- For the exposures assume that, for all *i*, we have *e_i* = *ℓ_iε* where *ε* is a basic exposure size and *ℓ_i* is a positive integer multiplier.
 Clearly this is an approximation in reality.
- Now define exposure bands b = 1, ..., n corresponding to the distinct values for the multipliers $\ell^{(1)}, ..., \ell^{(n)}$. Let $i \in s_b$ if $\ell_i = \ell^{(b)}$. Thus s_b is the set of indices for the obligors in exposure band b.
- Let $L^{(b)} = \sum_{i \in s_b} e_i \tilde{Y}_i = \epsilon I^{(b)} M^{(b)}$ where $M^{(b)} = \sum_{i \in s_b} \tilde{Y}_i$. (Losses in a band)
- Let $L = \sum_{b=1}^{n} L^{(b)}$ denote total loss and $M = \sum_{b=1}^{n} M^{(b)}$ denote total number of defaults as before.

The CreditRisk⁺ Actuarial Model

- Structure of Model
- Relation to Bernoulli Mixture Models
- The Exposure Band Concept
- Compound Distributions

Case of Independent Default Counts

- Suppose $\tilde{Y}_i \sim \text{Poi}(\lambda_i)$ and obligors default independently.
- In other words, we switch off the gamma-distributed factors (temporarily).
- Then $M^{(b)} \sim \text{Poi}(\lambda^{(b)})$ where $\lambda^{(b)} = \sum_{i \in s_b} \lambda_i$ is the default rate in exposure band *j*.
- Moreover $M \sim \text{Poi}(\lambda)$ where $\lambda = \sum_{b=1}^{n} \lambda^{(b)} = \sum_{i=1}^{m} \lambda_i$ is the default rate in the whole portfolio.
- What are the distributions of *L*^(b) and *L*?
- Answer: compound Poisson distributions.

Compound Poisson

- In general a compound Poisson random variable takes the form $Z = \sum_{i=1}^{N} X_i$ where $N \sim \text{Poi}(\mu)$ and X_1, X_2, \ldots , are iid variables with distribution function *G*.
- We write *Z* ~ CPoi(μ, *G*).
- The aggregate loss in a version of CreditRisk⁺ with fully independent defaults has distribution

 $L \sim \text{CPoi}(\lambda, G)$

where G is the df of a multinomial distribution.

• Under *G* the severity distribution of the default event is $\epsilon \ell^{(b)}$ with probability $\lambda^{(b)}/\lambda$ for b = 1, ..., n.

Structure of Model Relation to Bernoulli Mixture Models The Exposure Band Concept Compound Distributions

Compound Negative Binomial

- In general a compound negative binomial random variable takes the form Z = ∑^N_{i=1} X_i where N ~ NB(α, p) and X₁, X₂,..., are iid variables with distribution function G.
- We write *Z* ~ CNB(α, *p*, *G*).
- The aggregate loss in a version of CreditRisk⁺ with a single gamma-distributed factor is

$$L \sim \text{CNB}\left(\sigma^{-2}, \frac{1}{1 + \sigma^2 \sum_{i=1}^m k_i}, G\right)$$

where G is the df of a multinomial distribution.

- Under *G* the severity distribution of the default event is $\epsilon \ell^{(b)}$ with probability $\sum_{i \in s_b} k_i / \sum_{i=1}^m k_i$ for b = 1, ..., n.
- This is fairly straightforward to demonstrate using moment generating/characteristic function.

Structure of Model Relation to Bernoulli Mixture Models The Exposure Band Concept Compound Distributions

The General Case

- The loss has structure $L \stackrel{d}{=} \sum_{j=1}^{p} L_j$ for independent variables L_j relating to each independent factor.
- The L_i have compound negative binomial distributions:

$$L_j \sim \mathsf{CNB}\left(\sigma_j^{-2}, rac{1}{1 + \sigma_j^2 \sum_{i=1}^m k_i w_{ij}}, G_j
ight)$$

• G_j denotes the multinomial distribution that takes the value $\epsilon \ell^{(b)}$ with probability $\sum_{i \in s_b} k_i w_{ij} / \sum_{i=1}^m k_i w_{ij}$ for b = 1, ..., n.

Computing Loss Distribution with FFT Theory

- Practice
- Note on Calibration

Computing the Loss Distribution

- It is possible to compute the loss distribution using Fourier inversion with the fast Fourier transform (FFT).
- To use this technique we have to first compute the characteristic function of *L*.
- Recall that the characteristic function (cf) of a random variable Z is given by

$$\phi_{Z}(t) = E\left(e^{itZ}\right)$$

• The cf of a convolution of independent variables satisfies

$$\phi_L(t) = E\left(e^{itL}\right) = E\left(e^{it\sum_{j=1}^{p}L_j}\right) = \prod_{j=1}^{p}\phi_{L_j}(t).$$

• To compute the cf of *L_j* we have to be able to compute the cf of a compound distribution.

Characteristic Function of Compound Distribution

- Let $Z = \sum_{k=1}^{N} X_k$ where *N* is a frequency distribution (Poisson, negative binomial, etc.) and the X_k are iid severities.
- Let $\Pi_N(s) = E(s^N) = \sum_{n=0}^{\infty} s^n P(N = n)$ denote the probability generating function (pgf) of *N*.
- We compute

$$\begin{split} \phi_{\mathcal{Z}}(t) &= E\left(E\left(e^{it\sum_{k=1}^{N}X_{k}}\mid N\right)\right) \\ &= E\left(\phi_{X}(t)^{N}\right) = \Pi_{N}\left(\phi_{X}(t)\right)\,. \end{split}$$

The pgf of *N* ~ NB(α, *p*) is

$$\Pi_N(s) = \left(\frac{1-(1-p)s}{p}\right)^{-\alpha}$$

2 Computing Loss Distribution with FFT

- Theory
- Practice
- Note on Calibration

2 Computing Loss Distribution with FFT

- Theory
- Practice
- Note on Calibration

Theory Practice Note on Calibration

Calibration

- Calibration involves determination of default rates/probabilities k_i for individual obligors, factor weights w_i for individual obligors and factor variances σ_i².
- Default probabilities usually based on rating/scoring of obligors and use of historical data.
- Factors usually given a sector interpretation (financials, technology, pharma, etc.) so that weights are known.
- Factor variances determined from estimates of default correlation derived from historical data.
- Consider, for instance, the one-factor model in which the default counts \tilde{Y}_i are conditionally independent Poisson variables satisfying $\tilde{Y}_i | \Psi = \psi \sim \text{Poi}(k_i\psi)$ where $\Psi \sim \text{Ga}(\sigma^{-2}, \sigma^{-2})$.

Theory Practice Note on Calibration

Default Correlation in One-Factor Model

$$\rho(\mathbf{Y}_i, \mathbf{Y}_j) \approx \rho(\tilde{\mathbf{Y}}_i, \tilde{\mathbf{Y}}_j) = \frac{E(\tilde{\mathbf{Y}}_i \tilde{\mathbf{Y}}_j) - k_i k_j}{\sqrt{\operatorname{var}(\tilde{\mathbf{Y}}_i) \operatorname{var}(\tilde{\mathbf{Y}}_j)}}$$

•
$$E(\tilde{Y}_i\tilde{Y}_j) = E(E(\tilde{Y}_i\tilde{Y}_j \mid \Psi)) = k_ik_jE(\Psi^2) = k_ik_j(\sigma^2 + 1)$$

• $E(\tilde{Y}_i^2) = E(E(\tilde{Y}_i^2 \mid \Psi)) = E(\operatorname{var}(\tilde{Y}_i \mid \Psi) + E(\tilde{Y}_i \mid \Psi)^2) = E(k_i\Psi + k_i^2\Psi^2) = k_i + k_i^2E(\Psi^2)$

• var(
$$ilde{Y}_i$$
) = $k_i + k_i^2 \sigma^2$

$$\rho(\tilde{Y}_i, \tilde{Y}_j) = \frac{k_i k_j \sigma^2}{\sqrt{(k_i + k_i^2 \sigma^2)(k_j + k_j^2 \sigma^2)}}$$

< E > < E >