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 Catastrophe modelling
— What is it?

— How Vine copulas can be useful in the development of
catastrophe models?

* Vine Copulas in R

 Application: a catastrophe model for insurance losses due to
freeze events
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Catastrophe modelling

« Goal: generate exceedance probability curves (for a specific portfolio)
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Catastrophe modelling

« Goal: generate exceedance probability curves (for a specific portfolio)

* Insurance focus on extreme events (e.g. 1 in 200 year RP loss)
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—
Catastrophe modelling

« Goal: generate exceedance probability curves (for a specific portfolio)

* Insurance focus on extreme events (e.g. 1 in 200 year RP loss)

synthetic events

Create a large sample of
that are likely to happen

Exceedance Probability (EP) curve
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—

Catastrophe modelling

« Goal: generate exceedance probability curves (for a specific portfolio)

* Insurance focus on extreme events (e.g. 1 in 200 year RP loss)

synthetic events
that are likely to happen

N/

{ For each event calculate }

{Createalargesampleof }

Exceedance Probability (EP) curve
hazard intensity at each

location

A
LOSS, / 1in 200 years
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Catastrophe modelling

« Goal: generate exceedance probability curves (for a specific portfolio)

* Insurance focus on extreme events (e.g. 1 in 200 year RP loss)

synthetic events

Create a large sample of
that are likely to happen

For each event calculate Exceedance Probability (EP) curve
hazard intensity at each
location A
LOSS, / 1 in 200 years .

exposure at each location

Based on intensity and
calculate damage

0.5%
P(L>))
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—
Catastrophe modelling

« Goal: generate exceedance probability curves (for a specific portfolio)

* Insurance focus on extreme events (e.g. 1 in 200 year RP loss)

Create a large sample of
synthetic events

that are Iikely to happen

For each event calculate
hazard intensity at each
location

|
| S |
| |

Exceedance Probability (EP) curve

A
LOSS, / 1 in 200 years

exposure at each location
calculate damage

N/

Calculate aggregate losses
(for all risks) and
output reports

0.5%
P(L>))
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Catastrophe modelling

« Goal: generate exceedance probability curves (for a specific portfolio)

* Insurance focus on extreme events (e.g. 1 in 200 year RP loss)

synthetic events =  How big?

Create a large sample of =  Where?
that are likely to happen = How frequent?
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Catastrophe modelling

« Goal: generate exceedance probability curves (for a specific portfolio)

* Insurance focus on extreme events (e.g. 1 in 200 year RP loss)

synthetic events =  How big?

Create a large sample of =  Where?
that are likely to happen = How frequent?

We can use copulas to model separately
» The probability of hazard extremes at each location (marginals).
» The spatial correlation between the locations (dependence)
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—
Catastrophe modelling

« Goal: generate exceedance probability curves (for a specific portfolio)

* Insurance focus on extreme events (e.g. 1 in 200 year RP loss)

synthetic events =  How big?

Create a large sample of =  Where?
that are likely to happen = How frequent?

We can use copulas to model separately -f
> The probability of hazard extremes at each location (marginals). &
» The spatial correlation between the locations (dependence) '
- dependence in the vulnerability between risks

- due to the spatial structure of hazard
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Copulas

« Copulas are relative simple in 2 dimensions, but it gets
increasingly difficult in higher dimensions:

— The choice of adequate copulas is limited.

— Standard multivariate copulas either do not allow tail
dependence (e.g. multivariate Gaussian) or only have
one or two parameters to control tail dependence of
all pairs of variables (t-Student and Archimedean
multivariate copulas).
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Copulas

« Copulas are relative simple in 2 dimensions, but it gets
increasingly difficult in higher dimensions:

— The choice of adequate copulas is limited.

— Standard multivariate copulas either do not allow tail
dependence (e.g. multivariate Gaussian) or only have
one or two parameters to control tail dependence of #
all pairs of variables (t-Student and Archimedean '
multivariate copulas).

=» Vine-Copulas for higher dimensional data

GUY CARPENTER




—
Vine Copulas

* Vine-Copulas are based on a pairwise decomposition of a multivariate
model into bivariate copulas, where each pair-copula can be chosen
independently from the others.

* E.g. In 3 dimensions:

f (1, x2,x3) = f1(x1) f2(x2) f3(x3) marginals
X €12 (F1(x1), F2(x2)) * €23 (F2(x2), F3(x3)) uncoditional pairs
X ¢1312 (F1p2(x11x2), F312(x3]x2)) conditional pairs

* Vines thus combine the advantages of multivariate copula modelling, that is
separation of marginal and dependence modelling, and the flexibility of
bivariate copulas
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—

Vine Copulas

» The decomposition is not unique.

« Bedford and Cook (2001) have introduced a graphical structure called
vine structure which arranges the pair-copulas into trees.

* E.g. In 3 dimensions:

12 23
f(x1,x2,%3) = f1(x1) f2(x2) f3(x3) @ @ @
X €12(F1(x1), F2(x2)) = c23 (F2(x2), F3(x3))

X 1312 (Fyj2 (1 1%2), Faj2(x31%2)) @ 13|2 @
Or

f (1 x2x3) = fi(xn) fo () f3(x3) (1 ———3——2)
X €13(F1(x1), F3(x3)) = c23 (F2(x2), F3(x3))

X C12|3 (Fllg(X1|X3); F2|3(x2|x3)) @ 12|3 @
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Vine Copulas

» The decomposition is not unique.

« Bedford and Cook (2001) have introduced a graphical structure called
vine structure which arranges the pair-copulas into trees.
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—
Vine Copulas in R

« Packages
— CDVine (Authors: Schepsmeier and Brechmann)
- (https://cran.r-project.org/web/packages/CDVine/CDVine.pdf)
— VineCopula (Authors: Schepsmeier, Stoeber, Brechmann et al.)
- https://cran.r-project.org/web/packages/VineCopula/VineCopula.pdf)

 References
— http://www.statistics.ma.tum.de/en/research/vine-copula-models/

— Brechmann E. C. and U. Schepsmeier, Modeling Dependence with C-
and D-Vine Copulas: The R Package CDVine, Journal of Statistical
Software, Vol 52:3 (2013)

— Brechmann, Statistical inference of vine copulas using the R-package
VineCopula, Presentation, May 23 (2013)

— Schepsmeier (2013) Estimating standard errors and efficient goodness-
of-fit tests for regular vine copula models, PhD Thesis, Faculty of
Mathematics, University of Munich, Germany
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—
R Vine Matrix Object

« RVM = RVineMatrix(Matrix=Matrix, family=family, par=par, par2=par2)

— Matrix; used to describe the vine structure

— Family: 34 families of bivariate copulas implemented (Gaussian,
Student’s t, Clayton, Gumbel, Joe, Frank, etc.)

— Par, Par2: parameters
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—
R Vine Matrix Object

* RVM = RVineMatrix(Matrix=Matrix, family=family, par=par, par2=par2)

Parameter estimation:
Sequential estimation of parameters for each bivariate pair

« RVM_SegEst = RVineSegEst(data, RVM, method="mle") # fast

Maximum likelihood estimation of all parameters jointly:

« RVM_MLE = RVineMLE(data, RVMSeqEst) # Starting values using
sequentlal estimation

(slow)

GUY CARPENTER 18



—
R Vine Matrix Object

 RVM = RVineMatrix(Matrix=Matrix, family=family, par=par, par2=par2)

Pair copula selection:

— Manually using tools for bivariate analysis (e.g. plots or goodness-of-fit
tests: BiCopMetaContour, BiCopGofTest)

— Automatically determine the pair-copula families and parameters using
AIC or BIC:

- RVM_Cop = RVineCopSelect(data, Matrix=Matrix, selectioncrit="AIC")

GUY CARPENTER 19



—
R Vine Matrix Object

* RVM = RVineMatrix(Matrix=Matrix, family=family, par=par, par2=par2)

Vine structure selection:

« The method follows an automatic strategy of jointly searching for an
appropriate R-vine tree structure, its pair-copula families and estimating
their parameters developed by Dissmann et al. (2013).

— RVM_Matrix = RVineStructureSelect(data)
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—
R Vine Matrix Object

* RVM = RVineMatrix(Matrix=Matrix, family=family, par=par, par2=par2)
Simulation:

— SimData = RVineSim (10000, RVM)
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—
R Vine Matrix Object

* RVM = RVineMatrix(Matrix=Matrix, family=family, par=par, par2=par2)
Goodness-of-fit:

— goftest = RVineGofTest(data, RVM)
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—
R Vine Matrix Object

* RVM = RVineMatrix(Matrix=Matrix, family=family, par=par, par2=par2)

Tree 1

163 ¢ 166

R Vine tree plot:

168

— RVineTreePlot(RVM, tree=1, ...)

120 § 143
127
119

23
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—

Application: a catastrophe model for insurance losses
due to freeze events

 Losses resulting from burst / leaking pipes have a significant
Impact on the insurance industry

 Total insurance losses £50 — 300 mil per year in the last 10
years (ABI).

RRRRRRRRRRRR 24



—
Hazard

 Daily temperature data from the UK Met Office for 51 years (1960-2011)
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—
Hazard

 Daily temperature data from the UK Met Office for 51 years (1960-2011).

* Regrid to 50km x 50km (for computational reasons)
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—
Hazard

 Daily temperature data from the UK Met Office for 51 years (1960-2011).
* Regrid to 50km x 50km (for computational reasons)

« Compute the annual maximum Air Freezing Index (AFl), a commonly
used metric for determining the freezing severity of the winter season. It
measures the magnitude and duration of air temperature below freezing.
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—
Hazard

 Daily temperature data from the UK Met Office for 51 years (1960-2011).
* Regrid to 50km x 50km (for computational reasons)

« Compute the annual maximum Air Freezing Index (AFl), a commonly
used metric for determining the freezing severity of the winter season. It
measures the magnitude and duration of air temperature below freezing.

AFl is computed as the cumulative sum of
consecutive negative temperatures.

1000000
|

« Several such periods during a winter-
season (defined from 1st of July to 315t of
June of the next year).

¥y
600000

« Take the maximum to represent the winter-
season.

200000

« Computed for each grid-box.

200000
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AFl maps

1960 (i.e. 1.7.60-31.6.61)
WAFI = 1.06 degC

Weighed AFI (WAFI)
weighted over the
residential properties

n=179 nRisks;-AFI;

WAFI = == =5

i=1

NRisks;
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Historical AFI
(winter-season: 1960-1961)
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—
AFI maps

Historical AFI
(winter-season: 1961-1962)

- 1961 (i.e. 1.7.61-31.6.62)

« WAFI = 25.73 degC o 60
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—
AFI maps

Historical AFI
(winter-season: 1962-1963)

. 1962 (i.e. 1.7.62-31.6.63)

« WAFI =72.89 degC o 140
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The "Big Freeze” of the winter 1962/1963

« The winter of 1962-1963 (also known as the Big Freeze of 1963) was
one of the coldest winters on record in the United Kingdom.

« Notable for its persistence: it started on the 22" of December and lasted
until 4t of March.

GUY CARPENTER

'Central England' winter mean temperatures (DJF, °C)

1660-2013

Courtesy: UK Met Office
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NH temperature anomalies

iTemperature anomalies — northern Hemisphere

crutem4December 1962 to February 1963

=
»
e

90N

60N .

30N

» Very cold over NW Europe (anomalies below -5 degC)
- Very mild over Greenland and northern Canada (+5 degC)

Courtesy John Kennedy, Met Office Hadley Centre
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WAFI timeseries — all U.K.
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—
Stochastic hazard generation

 Fit a Generalized Extreme Value (GEV)
distribution (which includes the Gumbel,
the Frechet, and Welibull distributions) at

each grid cell. <
* | use the Tail-Weighted Maximum g |
Likelihood Estimation (TWMLE) method =
developed by Kemp et al. (2013) to 5 9 -
estimate the parameters at each cell. E’ i
=~ 8 -
g /
o _|
Q
g —
D —

0 50 150 250
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Return period maps
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—
RVM for Freeze model

* In the UK Freeze model, the joint multivariate hazard distribution has 170
dimensions (i.e. cells) and it is decomposed as a product of 14,365 pair
copula and marginal densities as follows:

169 169 170

f(x15.0,X170) = HHC (i ) (1) o 1) (F O | X s e ) F (X iy s X)) - | ] ()
k=1

j=1i=1

 We need to find:

— The bivariate copulas families for all the 14,365 pairs and their
parameters

— The appropriate RVine tree structure
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—
RVM for Freeze model

» Fitan RVM model:
— rvm <- RVineStructureSelect ( AFl, type = “RVine”, ...)
— ~ 30 min

Processor Intel(R) Core(TM) 17-3520M CPU @ 290GHz 2.90 GHz

My laptop:
y 1aptop Installed memory (RAM):  8.00 GE (7.87 GB usable)



———
RVM for
Freeze model

« Manually checking
the fits between the
pair-wise copulas.
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—
RVM for Freeze model

» Fitan RVM model:
— rvm <- RVineStructureSelect ( AFI, type = “RVine”, ...)
— ~ 30 min

« Simulate 10K years of events:
— corrsamples = RVineSim( 10000, rvm)
— ~5min

Processor Intel(R) Core(TM) 17-3520M CPU @ 290GHz 2.90 GHz

My laptop:
y 1aptop Installed memory (RAM):  8.00 GE (7.87 GB usable)



—
RVM for Freeze model

» Fitan RVM model:
— rvm <- RVineStructureSelect ( AFl, type = “RVine”, ...)
— ~ 30 min

« Simulate 10K years of events:
— corrsamples = RVineSim( 10000, rvm)
— ~5min

« Goodness-of-fit test:
— goftest <- RVineGofTest( AFI, rvm, ...)
— p.value =0.725
— ~ 130 min

Processor Intel(R) Core(TM) 17-3520M CPU @ 290GHz 2.90 GHz

My laptop:
y 1aptop Installed memory (RAM):  8.00 GE (7.87 GB usable)



RVM for Freeze model

Fit an RVM model:

— rvm <- RVineStructureSelect ( AFl, type = “RVine”, ...)

— ~30 min

Simulate 10K years of events:
— corrsamples = RVineSim( 10000, rvm)
— ~5min

Goodness-of-fit test:

— goftest <- RVineGofTest( AFI, rvm, ...)
— p.value =0.725

— ~ 130 min

Plot the first level tree:
— RVineTreePlot(rvm, tree=1, ...)

163 ¢ 166 97
165 87

4 . 77
147 |l 1o; 131 167 = =

Processor:

My laptop: Installed memaory (RAM):

Intel(R) Core(TM) 17-3520M CPU @ 2.90GHz 2.90 GHz
8.00 GB (7.87 GB usable)
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Stochastic set of synthetic events
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—
Hazard simulation (weighted AFI)

OEP

« Winter of 1962/63 (with
WAFI of 73 degC) is
estimated to be ~ 80-
year RP event.
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Implementation inside a Catastrophe model

UK
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Exposure
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—
Conclusion

 “All models are wrong.. Some are useful’
* Vine copulas can be useful in catastrophe modelling

 Other applications could be:
— Vulnerability dependence between risks
— Cross-peril correlations

* The implementation in R is very powerful & easy to use. Many
thanks to the authors of the VineCopula and CDVine
packages!

* Thank you for your attention!!
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Motivation, history and background

Some history of vine models

Joe (1996) gave a probabilistic construction of multivariate
distributions functions based on simple building blocks called
pair-copulas.

Bedford and Cooke (2001) and Bedford and Cooke (2002) organized
these constructions in a graphical way called regular vines and gave
expression for the joint density.

Estimation for the Gaussian case was considered in the book by
Kurowicka and Cooke (2006).

Aas et al. (2009) used the PCC construction to construct flexible
multivariate copulas based on pair-copulas such as bivariate Gaussian,
t-, Gumbel and Clayton copulas and provided likelihood expressions.

First and second vine workshops took place in Delft in Nov. 2007 and
Dec. 2008, a third one took place in Oslo in Dec. 2009. Workshop
results are published in Kurowicka and Joe (2011).

A recent survey about PCC models is Czado (2010).

From “The world of vines”, Czado, (2011)



